ﻻ يوجد ملخص باللغة العربية
A simple C++ class structure for construction of a Monte Carlo event generators which can produce unweighted events within relativistic phase space is presented. The generator is self-adapting to the provided matrix element and acceptance cuts. The program is designed specially for exclusive processes and includes, as an example of such an application, implementation of the model for exclusive production of meson pairs $pp rightarrow p M^+M^- p $ in high energy proton-proton collisions.
Event generators are an indispensable tool for the preparation and analysis of particle-physics experiments. In this contribution, physics principles underlying the construction of such computer programs are discussed. Results, within and beyond the
Parton distribution functions (PDFs) describe the structure of hadrons as composed of quarks and gluons. They are needed to make predictions for short-distance processes in high-energy collisions and are determined by fitting to cross section data. W
Electroweak instantons are a prediction of the Standard Model and have been studied in great detail in the past although they have not been observed. Earlier calculations of the instanton production cross section at colliders revealed that it was exp
We develop a Monte-Carlo event generator based on combination of a parton production formula including the effects of parton saturation (called the DHJ formula) and hadronization process due to the Lund string fragmentation model. This event generato
An exclusive event generator is designed for the $e^+e^-$ scan experiments with the initial state radiation effects up to the second order correction included. There are seventy hadronic decay modes available with the effective center-of-mass energy