ﻻ يوجد ملخص باللغة العربية
We present preliminary results on the axial form factor $G_A(Q^2)$ and the induced pseudoscalar form factor $G_P(Q^2)$ of the nucleon. A systematic analysis of the excited-state contributions to form factors is performed on the CLS ensemble `N6 with $m_pi = 340 text{MeV}$ and lattice spacing $a sim 0.05 text{fm}$. The relevant three-point functions were computed with source-sink separations ranging from $t_s sim 0.6 text{fm}$ to $t_s sim 1.4 text{fm}$. We observe that the form factors suffer from non-trivial excited-state contributions at the source-sink separations available to us. It is noted that naive plateau fits underestimate the excited-state contributions and that the method of summed operator insertions correctly accounts for these effects.
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects a
We present results on the nucleon axial vector form factors $G_A(q^2)$ and $G_p(q^2)$ in the quenched theory and using two degenerate flavors of dynamical Wilson fermions for momentum transfer squared from about 0.1 to about 2 GeV^2 and for pion mass
We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured
We report a calculation of the nucleon axial form factors $G_A^q(Q^2)$ and $G_P^q(Q^2)$ for all three light quark flavors $qin{u,d,s}$ in the range $0leq Q^2lesssim 1.2text{ GeV}^2$ using lattice QCD. This work was done using a single ensemble with p
We determine the generalized form factors, which correspond to the second Mellin moment (i.e., the first $x$-moment) of the generalized parton distributions of the nucleon at leading twist. The results are obtained using lattice QCD with $N_f=2$ nonp