ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonance enhancement by suitably chosen frequency detuning

183   0   0.0 ( 0 )
 نشر من قبل Denys Dutykh
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this Letter we report new effects of resonance detuning on various dynamical parameters of a generic 3-wave system. Namely, for suitably chosen values of detuning the variation range of amplitudes can be significantly wider than for exact resonance. Moreover, the range of energy variation is not symmetric with respect to the sign of the detuning. Finally, the period of the energy oscillation exhibits non-monotonic dependency on the magnitude of detuning. These results have important theoretical implications where nonlinear resonance analysis is involved, such as geophysics, plasma physics, fluid dynamics. Numerous practical applications are envisageable e.g. in energy harvesting systems.



قيم البحث

اقرأ أيضاً

Cross-resonance interactions are a promising way to implement all-microwave two-qubit gates with fixed-frequency qubits. In this work, we study the dependence of the cross-resonance interaction rate on qubit-qubit detuning and compare with a model th at includes the higher levels of a transmon system. To carry out this study we employ two transmon qubits--one fixed frequency and the other flux tunable--to allow us to vary the detuning between qubits. We find that the interaction closely follows a three-level model of the transmon, thus confirming the presence of an optimal regime for cross-resonance gates.
420 - Junshan Lin , Sang-Hyun Oh , 2020
We derive the formulas for the resonance frequencies and their sensitivity when the nano-slit structures are used in the detection of thin layers. For a thin layer with a thickness of $H$ deposited over the nanostructure, we show quantitatively that for both single and periodic slit structures with slit aperture size $delta$, the sensitivity of resonance frequency reduces as $H$ increases. Specifically, the sensitivity is of order $O(delta/H)$ if $H >delta$ and of order $O(1+ln H/delta)$ otherwise. The evanescent wave modes are present along the interface between the thin dielectric film and ambient medium above. From the mathematical derivations, it is observed that the sensitivity of the resonance frequency highly depends on the effect of evanescent wave modes on the tiny slit apertures.
By frequency-band extracting, we experimentally and theoretically investigate time-delay signature (TDS) suppression and entropy growth enhancement of a chaotic optical-feedback semiconductor laser under different injection currents and feedback stre ngths. The TDS and entropy growth are quantified by the peak value of autocorrelation function and the difference of permutation entropy at the feedback delay time. At the optimal extracting bandwidth, the measured TDS is suppressed up to 96% compared to the original chaos, and the entropy growth is higher than the noise-dominated threshold indicating that the dynamical process is noisy. The effects of extracting bandwidth and radio frequencies on the TDS and entropy growth are also clarified experimentally and theoretically. The experimental results are in good agreements with the theoretical results. The skewness of the laser intensity distribution is effectively improved to 0.001 with the optimal extracting bandwidth. This technique provides a promising tool to extract randomness and prepare desired entropy sources for chaotic secure communication and random number generation.
142 - H. Then , B. Thide 2009
Angular momentum densities of electromagnetic beams are connected to helicity (circular polarization) and topological charge (azimuthal phase shift and vorticity). Computing the electromagnetic fields emitted by a circular antenna array, analytic exp ressions are found for the densities of energy, linear and angular momentum in terms of helicity and vorticity. It is found that the angular momentum density can be separated into spin and orbital parts, a result that is known to be true in a beam geometry. The results are of importance for information-rich radio astronomy and space physics as well as novel radio, radar, and wireless communication concepts.
The kinetics of a periodically driven nonlinear oscillator, bistable in a nearly resonant field, has been investigated theoretically and through analogue experiments. An activation dependence of the probabilities of fluctuational transitions between the coexisting attractors has been observed, and the activation energies of the transitions have been calculated and measured for a wide range of parameters. The position of the kinetic phase transition (KPT), at which the populations of the attractors are equal, has been established. A range of critical phenomena is shown to arise in the vicinity of the KPT including, in particular, the appearance of a supernarrow peak in the spectral density of the fluctuations, and the occurrence of high-frequency stochastic resonance (HFSR). The experimental measurements of the transition probabilities, the KPT line, the multipeaked spectral densities, the strength of the supernarrow spectral peak, and of the HFSR effect are shown to be in good agreement with the theoretical predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا