ﻻ يوجد ملخص باللغة العربية
By studying the heat semigroup, we prove Li-Yau type estimates for bounded and positive solutions of the heat equation on graphs, under the assumption of the curvature-dimension inequality $CDE(n,0)$, which can be consider as a notion of curvature for graphs. Furthermore, we derive that if a graph has non-negative curvature then it has the volume doubling property, from this we can prove the Gaussian estimate for heat kernel, and then Poincare inequality and Harnack inequality. As a consequence, we obtain that the dimension of space of harmonic functions on graphs with polynomial growth is finite, which original is a conjecture of Yau on Riemannian manifold proved by Colding and Minicozzi. Under the assumption of positive curvature on graphs, we derive the Bonnet-Myers type theorem that the diameter of graphs is finite and bounded above in terms of the positive curvature by proving some Log Sobolev inequalities.
In this paper we provide new existence results for isoperimetric sets of large volume in Riemannian manifolds with nonnegative Ricci curvature and Euclidean volume growth. We find sufficient conditions for their existence in terms of the geometry at
Let $M^n$ be a complete, open Riemannian manifold with $Ric geq 0$. In 1994, Grigori Perelman showed that there exists a constant $delta_{n}>0$, depending only on the dimension of the manifold, such that if the volume growth satisfies $alpha_M := lim
We give a simple proof of a recent result due to Agostiniani, Fogagnolo and Mazzieri.
In this paper we analyze the behavior of the distance function under Ricci flows whose scalar curvature is uniformly bounded. We will show that on small time-intervals the distance function is $frac12$-Holder continuous in a uniform sense. This impli
Curvature is a fundamental geometric characteristic of smooth spaces. In recent years different notions of curvature have been developed for combinatorial discrete objects such as graphs. However, the connections between such discrete notions of curv