ﻻ يوجد ملخص باللغة العربية
Quantum trajectories and superoperator algorithms implemented within the matrix product state (MPS) framework are powerful tools to simulate the real-time dynamics of open dissipative quantum systems. As for the unitary case, the reachable time-scales as well as system sizes are limited by the (possible) build-up of entanglement entropy. The aforementioned methods constitute complementary approaches how Lindblad master equations can be integrated relying either on a quasi-exact representation of the full density matrix or a stochastic unraveling of the density matrix in terms of pure states. In this work, we systematically benchmark both methods by studying the dynamics of a Bose-Hubbard chain in the presence of local as well as global dephasing. The build-up as well as system-size scaling of entanglement entropy strongly depends on the method and the parameter regime and we discuss the applicability of the methods for these cases as well as study the distribution of observables and time discretization errors that can become a limiting factor for global dissipation.
We develop a numerical method based on matrix product states for simulating quantum many-body systems at finite temperatures without importance sampling and evaluate its performance in spin 1/2 systems. Our method is an extension of the random phase
We prove that ground states of gapped local Hamiltonians on an infinite spin chain can be efficiently approximated by matrix product states with a bond dimension which scales as D~(L-1)/epsilon, where any local quantity on L consecutive spins is approximated to accuracy epsilon.
Calculation of the entropy of an ideal Bose Einstein Condensate (BEC) in a three dimensional trap reveals unusual, previously unrecognized, features of the Canonical Ensemble. It is found that, for any temperature, the entropy of the Bose gas is equa
We present a unified framework for renormalization group methods, including Wilsons numerical renormalization group (NRG) and Whites density-matrix renormalization group (DMRG), within the language of matrix product states. This allows improvements o
We experimentally investigate the action of a localized dissipative potential on a macroscopic matter wave, which we implement by shining an electron beam on an atomic Bose-Einstein condensate (BEC). We measure the losses induced by the dissipative p