We study some properties of tau-functions of an isomonodromic deformation leading to the fifth Painleve equation. In particular, here is given an elementary proof of Miwas formula for the logarithmic differential of a tau-function.
We investigate the structure of $tau$-functions for the elliptic difference Painleve equation of type $E_8$. Introducing the notion of ORG $tau$-functions for the $E_8$ lattice, we construct some particular solutions which are expressed in terms of e
lliptic hypergeometric integrals. Also, we discuss how this construction is related to the framework of lattice $tau$-functions associated with the configuration of generic nine points in the projective plane.
We prove that if f and g are holomorphic functions on an open connected domain, with the same moduli on two intersecting segments, then f = g up to the multiplication of a unimodular constant, provided the segments make an angle that is an irrational
multiple of $pi$. We also prove that if f and g are functions in the Nevanlinna class, and if |f | = |g| on the unit circle and on a circle inside the unit disc, then f = g up to the multiplication of a unimodular constant.
Let $mathsf M$ and $mathsf M _{mathsf S}$ respectively denote the Hardy-Littlewood maximal operator with respect to cubes and the strong maximal operator on $mathbb{R}^n$, and let $w$ be a nonnegative locally integrable function on $mathbb{R}^n$. We
define the associated Tauberian functions $mathsf{C}_{mathsf{HL},w}(alpha)$ and $mathsf{C}_{mathsf{S},w}(alpha)$ on $(0,1)$ by [ mathsf{C}_{mathsf{HL},w}(alpha) :=sup_{substack{E subset mathbb{R}^n 0 < w(E) < infty}} frac{1}{w(E)}w({x in mathbb{R}^n : mathsf M chi_E(x) > alpha}) ] and [ mathsf{C}_{mathsf{S},w}(alpha) := sup_{substack{E subset mathbb{R}^n 0 < w(E) < infty}} frac{1}{w(E)}w({x in mathbb{R}^n : mathsf M _{mathsf S}chi_E(x) > alpha}). ] Utilizing weighted Solyanik estimates for $mathsf M$ and $mathsf M_{mathsf S}$, we show that the function $mathsf{C}_{mathsf{HL},w} $ lies in the local Holder class $C^{(c_n[w]_{A_{infty}})^{-1}}(0,1)$ and $mathsf{C}_{mathsf{S},w} $ lies in the local Holder class $C^{(c_n[w]_{A_{infty}^ast})^{-1}}(0,1)$, where the constant $c_n>1$ depends only on the dimension $n$.
We prove a Fredholm determinant and short-distance series representation of the Painleve V tau function $tau(t)$ associated to generic monodromy data. Using a relation of $tau(t)$ to two different types of irregular $c=1$ Virasoro conformal blocks an
d the confluence from Painleve VI equation, connection formulas between the parameters of asymptotic expansions at $0$ and $iinfty$ are conjectured. Explicit evaluations of the connection constants relating the tau function asymptotics as $tto 0,+infty,iinfty$ are obtained. We also show that irregular conformal blocks of rank 1, for arbitrary central charge, are obtained as confluent limits of the regular conformal blocks.
Explicit determinant formulas are presented for the $tau$ functions of the generalized Painleve equations of type $A$. This result allows an interpretation of the $tau$-functions as the Plucker coordinates of the universal Grassmann manifold.