ترغب بنشر مسار تعليمي؟ اضغط هنا

Main-sequence stars masquerading as Young Stellar Objects in the central molecular zone

129   0   0.0 ( 0 )
 نشر من قبل Christine Koepferl
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In contrast to most other galaxies, star-formation rates in the Milky Way can be estimated directly from Young Stellar Objects (YSOs). In the Central Molecular Zone (CMZ) the star-formation rate calculated from the number of YSOs with 24 microns emission is up to order of magnitude higher than the value estimated from methods based on diffuse emission (such as free-free emission). Whether this effect is real or whether it indicates problems with either or both star formation rate measures is not currently known. In this paper, we investigate whether estimates based on YSOs could be heavily contaminated by more evolved objects such as main-sequence stars. We present radiative transfer models of YSOs and of main-sequence stars in a constant ambient medium which show that the main-sequence objects can indeed mimic YSOs at 24 microns. However, we show that in some cases the main-sequence models can be marginally resolved at 24 microns, whereas the YSO models are always unresolved. Based on the fraction of resolved MIPS 24 microns sources in the sample of YSOs previously used to compute the star formation rate, we estimate the fraction of misclassified YSOs to be at least 63%, which suggests that the star-formation rate previously determined from YSOs is likely to be at least a factor of three too high.



قيم البحث

اقرأ أيضاً

329 - M. Cignoni 2010
We present a novel approach to derive the age of very young star clusters, by using the Turn-On (TOn). The TOn is the point in the color-magnitude diagram (CMD) where the pre-main sequence (PMS) joins the main sequence (MS). In the MS luminosity func tion (LF) of the cluster, the TOn is identified as a peak followed by a dip. We propose that by combining the CMD analysis with the monitoring of the spatial distribution of MS stars it is possible to reliably identify the TOn in extragalactic star forming regions. Compared to alternative methods, this technique is complementary to the turn-off dating and avoids the systematic biases affecting the PMS phase. We describe the method and its uncertainties, and apply it to the star forming region NGC346, which has been extensively imaged with the Hubble Space Telescope (HST). This study extends the LF approach in crowded extragalactic regions and opens the way for future studies with HST/WFC3, JWST and from the ground with adaptive optics.
79 - Meyer D. M.-A. 2018
Episodic accretion-driven outbursts are an extreme manifestation of accretion variability. It has been proposed that the development of gravitational instabilities in the proto-circumstellar medium of massive young stellar objects (MYSOs) can lead to such luminous bursts, when clumps of fragmented accretion discs migrate onto the star. We simulate the early evolution of MYSOs formed by the gravitational collapse of rotating 100 M pre-stellar cores and analyze the characteristics of the bursts that episodically accompany their strongly time-variable protostellar lightcurve. We predict that MYSOs spend ~ 10^3 yr (~ 1.7%) of their modelled early 60 kyr experiencing eruptive phases, during which the peak luminosity exceeds the quiescent pre-burst values by factors from 2.5 to more than 40. Throughout these short time periods, they can acquire a substential fraction (up to ~ 50 %) of their zero-age-main sequence mass. Our findings show that fainter bursts are more common than brighter ones. We discuss our results in the context of the known bursting MYSOs, e.g. NGC6334I-MM1 and S255IR-NIRS3, and propose that these monitored bursts are part of a long-time ongoing series of eruptions, which might, in the future, be followed by other luminous flares.
Using a sample of 31 main-sequence OB stars located between galactocentric distances 8.4 - 15.6 kpc, we aim to probe the present-day radial abundance gradients of the Galactic disk. The analysis is based on high-resolution spectra obtained with the M IKE spectrograph on the Magellan Clay 6.5-m telescope on Las Campanas. We used a non-NLTE analysis in a self-consistent semi-automatic routine based on TLUSTY and SYNSPEC to determine atmospheric parameters and chemical abundances. Stellar parameters (effective temperature, surface gravity, projected rotational velocity, microturbulence, and macroturbulence) and silicon and oxygen abundances are presented for 28 stars located beyond 9 kpc from the Galactic centre plus three stars in the solar neighborhood. The stars of our sample are mostly on the main-sequence, with effective temperatures between 20800 - 31300 K, and surface gravities between 3.23 - 4.45 dex. The radial oxygen and silicon abundance gradients are negative and have slopes of -0.07 dex/kpc and -0.09 dex/kpc, respectively, in the region $8.4 leq R_G leq 15.6$,kpc. The obtained gradients are compatible with the present-day oxygen and silicon abundances measured in the solar neighborhood and are consistent with radial metallicity gradients predicted by chemodynamical models of Galaxy Evolution for a subsample of young stars located close to the Galactic plane.
We have carried out a search for optically visible post-Asymptotic Giant Branch (post-AGB) stars in the Large Magellanic Cloud (LMC). First, we selected candidates with a mid-IR excess and then obtained their optical spectra. We disentangled contamin ants with unique spectra such as M-stars, C-stars, planetary nebulae, quasi-stellar objects and background galaxies. Subsequently, we performed a detailed spectroscopic analysis of the remaining candidates to estimate their stellar parameters such as effective temperature, surface gravity (log g), metallicity ([Fe/H]), reddening and their luminosities. This resulted in a sample of 35 likely post-AGB candidates with late-G to late-A spectral types, low log g, and [Fe/H] < -0.5. Furthermore, our study confirmed the existence of the dusty post-Red Giant Branch (post-RGB) stars, discovered previously in our SMC survey, by revealing 119 such objects in the LMC. These objects have mid-IR excesses and stellar parameters (Teff, log g, [Fe/H]) similar to those of post-AGB stars except that their luminosities (< 2500 Lsun), and hence masses and radii, are lower. These post-RGB stars are likely to be products of binary interaction on the RGB. The post-AGB and post-RGB objects show SED properties similar to the Galactic post-AGB stars, where some have a surrounding circumstellar shell, while some others have a surrounding stable disc similar to the Galactic post-AGB binaries. This study also resulted in a new sample of 162 young stellar objects, identified based on a robust log g criterion. Other interesting outcomes include objects with an UV continuum and an emission line spectrum; luminous supergiants; hot main-sequence stars; and 15 B[e] star candidates, 12 of which are newly discovered in this study.
Using observations from the {em Herschel} Inventory of The Agents of Galaxy Evolution (HERITAGE) survey of the Magellanic Clouds, we have found thirty five evolved stars and stellar end products that are bright in the far-infrared. These twenty eight (LMC) and seven (SMC) sources were selected from the 529 evolved star candidates in the HERITAGE far-infrared point source catalogs. Our source identification method is based on spectral confirmation, spectral energy distribution characteristics, careful examination of the multiwavelength images and includes constraints on the luminosity, resulting in a thoroughly vetted list of evolved stars. These sources span a wide range in luminosity and hence initial mass. We found thirteen low- to intermediate mass evolved stars, including asymptotic giant branch (AGB) stars, post-AGB stars, planetary nebulae and a symbiotic star. We also identify ten high mass stars, including four of the fifteen known B[e] stars in the Magellanic Clouds, three extreme red supergiants which are highly enshrouded by dust, a Luminous Blue Variable, a Wolf-Rayet star and two supernova remnants. Further, we report the detection of nine probable evolved objects which were previously undescribed in the literature. These sources are likely to be among the dustiest evolved objects in the Magellanic Clouds. The {em Herschel} emission may either be due to dust produced by the evolved star or it may arise from swept-up ISM material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا