ﻻ يوجد ملخص باللغة العربية
We develop a new framework for use in exploring Type Ia Supernova (SN Ia) spectra. Combining Principal Component Analysis (PCA) and Partial Least Square analysis (PLS) we are able to establish correlations between the Principal Components (PCs) and spectroscopic/photometric SNe Ia features. The technique was applied to ~120 supernova and ~800 spectra from the Nearby Supernova Factory. The ability of PCA to group together SNe Ia with similar spectral features, already explored in previous studies, is greatly enhanced by two important modifications: (1) the initial data matrix is built using derivatives of spectra over the wavelength, which increases the weight of weak lines and discards extinction, and (2) we extract time evolution information through the use of entire spectral sequences concatenated in each line of the input data matrix. These allow us to define a stable PC parameter space which can be used to characterize synthetic SN Ia spectra by means of real SN features. Using PLS, we demonstrate that the information from important previously known spectral indicators (namely the pseudo-equivalent width (pEW) of Si II 5972 / Si II 6355 and the line velocity of S II 5640 / Si II 6355) at a given epoch, is contained within the PC space and can be determined through a linear combination of the most important PCs. We also show that the PC space encompasses photometric features like B or V magnitudes, B-V color and SALT2 parameters c and x1. The observed colors and magnitudes, that are heavily affected by extinction, cannot be reconstructed using this technique alone. All the above mentioned applications allowed us to construct a metric space for comparing synthetic SN Ia spectra with observations.
We present a time series of the highest resolution spectra yet published for the nearby Type Ia supernova (SN) 2014J in M82. They were obtained at 11 epochs over 33 days around peak brightness with the Levy Spectrograph (resolution R~110,000) on the
In the next decade Type Ia supernovae (SNe Ia) will be used to test theories predicting changes in the Dark Energy equation of state with time. Ultimately this requires a dedicated space mission like JDEM. SNe Ia are mature cosmological probes --- th
We present 637 low-redshift optical spectra collected by the Berkeley Supernova Ia Program (BSNIP) between 2009 and 2018, almost entirely with the Kast double spectrograph on the Shane 3~m telescope at Lick Observatory. We describe our automated spec
We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This dataset provides unique spect
We present the optical (UBVRI) and ultraviolet (Swift-UVOT) photometry, and optical spectroscopy of Type Ia supernova SN 2017hpa. We study broadband UV+optical light curves and low resolution spectroscopy spanning from $-13.8$ to $+108$~d from the ma