ترغب بنشر مسار تعليمي؟ اضغط هنا

A metric space for type Ia supernova spectra

144   0   0.0 ( 0 )
 نشر من قبل Michele Sasdelli
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a new framework for use in exploring Type Ia Supernova (SN Ia) spectra. Combining Principal Component Analysis (PCA) and Partial Least Square analysis (PLS) we are able to establish correlations between the Principal Components (PCs) and spectroscopic/photometric SNe Ia features. The technique was applied to ~120 supernova and ~800 spectra from the Nearby Supernova Factory. The ability of PCA to group together SNe Ia with similar spectral features, already explored in previous studies, is greatly enhanced by two important modifications: (1) the initial data matrix is built using derivatives of spectra over the wavelength, which increases the weight of weak lines and discards extinction, and (2) we extract time evolution information through the use of entire spectral sequences concatenated in each line of the input data matrix. These allow us to define a stable PC parameter space which can be used to characterize synthetic SN Ia spectra by means of real SN features. Using PLS, we demonstrate that the information from important previously known spectral indicators (namely the pseudo-equivalent width (pEW) of Si II 5972 / Si II 6355 and the line velocity of S II 5640 / Si II 6355) at a given epoch, is contained within the PC space and can be determined through a linear combination of the most important PCs. We also show that the PC space encompasses photometric features like B or V magnitudes, B-V color and SALT2 parameters c and x1. The observed colors and magnitudes, that are heavily affected by extinction, cannot be reconstructed using this technique alone. All the above mentioned applications allowed us to construct a metric space for comparing synthetic SN Ia spectra with observations.



قيم البحث

اقرأ أيضاً

We present a time series of the highest resolution spectra yet published for the nearby Type Ia supernova (SN) 2014J in M82. They were obtained at 11 epochs over 33 days around peak brightness with the Levy Spectrograph (resolution R~110,000) on the 2.4m Automated Planet Finder telescope at Lick Observatory. We identify multiple Na I D and K I absorption features, as well as absorption by Ca I H & K and several of the more common diffuse interstellar bands (DIBs). We see no evolution in any component of Na I D, Ca I, or in the DIBs, but do establish the dissipation/weakening of the two most blueshifted components of K I. We present several potential physical explanations, finding the most plausible to be photoionization of circumstellar material, and discuss the implications of our results with respect to the progenitor scenario of SN 2014J.
In the next decade Type Ia supernovae (SNe Ia) will be used to test theories predicting changes in the Dark Energy equation of state with time. Ultimately this requires a dedicated space mission like JDEM. SNe Ia are mature cosmological probes --- th eir limitations are well characterized, and a path to improvement is clear. Dominant systematic errors include photometric calibration, selection effects, reddening, and population-dependent differences. Building on past lessons, well-controlled new surveys are poised to make strides in these areas: the Palomar Transient Factory, Skymapper, La Silla QUEST, Pan-STARRS, the Dark Energy Survey, LSST, and JDEM. They will obviate historical calibrations and selection biases, and allow comparisons via large subsamples. Some systematics follow from our ignorance of SN Ia progenitors, which there is hope of determining with SN Ia rate studies from 0<z<4. Aside from cosmology, SNe Ia regulate galactic and cluster chemical evolution, inform stellar evolution, and are laboratories for extreme physics. Essential probes of SNe Ia in these contexts include spectroscopy from the UV to the IR, X-ray cluster and SN remnant observations, spectropolarimetry, and advanced theoretical studies. While there are an abundance of discovery facilities planned, there is a deficit of follow-up resources. Living in the systematics era demands deep understanding rather than larger statistics. NOAO ReSTAR initiative to build 2-4m telescopes would provide necessary follow-up capability. Finally, to fully exploit LSST, well-matched wide-field spectroscopic capabilities are desirable.
We present 637 low-redshift optical spectra collected by the Berkeley Supernova Ia Program (BSNIP) between 2009 and 2018, almost entirely with the Kast double spectrograph on the Shane 3~m telescope at Lick Observatory. We describe our automated spec tral classification scheme and arrive at a final set of 626 spectra (of 242 objects) that are unambiguously classified as belonging to Type Ia supernovae (SNe~Ia). Of these, 70 spectra of 30 objects are classified as spectroscopically peculiar (i.e., not matching the spectral signatures of normal SNe~Ia) and 79 SNe~Ia (covered by 328 spectra) have complementary photometric coverage. The median SN in our final set has one epoch of spectroscopy, has a redshift of 0.0208 (with a low of 0.0007 and high of 0.1921), and is first observed spectroscopically 1.1 days after maximum light. The constituent spectra are of high quality, with a median signal-to-noise ratio of 31.8 pixel$^{-1}$, and have broad wavelength coverage, with $sim 95%$ covering at least 3700--9800~AA. We analyze our dataset, focusing on quantitative measurements (e.g., velocities, pseudo-equivalent widths) of the evolution of prominent spectral features in the available early-time and late-time spectra. The data are available to the community, and we encourage future studies to incorporate our spectra in their analyses.
We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This dataset provides unique spect ral time series down to 2000 Angstrom. Significant diversity is seen in the near maximum-light spectra (~ 2000--3500 Angstrom) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminosities measured in uvw1/F250W are found to correlate with the B-band light-curve shape parameter dm15(B), but with much larger scatter relative to the correlation in the broad-band B band (e.g., ~0.4 mag versus ~0.2 mag for those with 0.8 < dm15 < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at > 3 sigma), being brighter than normal SNe Ia such as SN 2005cf by ~0.9 mag and ~2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects.
We present the optical (UBVRI) and ultraviolet (Swift-UVOT) photometry, and optical spectroscopy of Type Ia supernova SN 2017hpa. We study broadband UV+optical light curves and low resolution spectroscopy spanning from $-13.8$ to $+108$~d from the ma ximum light in $B$-band. The photometric analysis indicates that SN 2017hpa is a normal type Ia with $Delta m_{B}(15) = 0.98pm0.16$ mag and $M_{B}=-19.45pm0.15$ mag at a distance modulus of $mu = 34.08pm0.09$ mag. The $(uvw1-uvv)$ colour evolution shows that SN 2017hpa falls in the NUV-blue group. The $(B-V)$ colour at maximum is bluer in comparison to normal type Ia supernovae. Spectroscopic analysis shows that the Si II 6355 absorption feature evolves rapidly with a velocity gradient, $dot{v}=128pm 7$ km s$^{-1}$ d$^{-1}$. The pre-maximum phase spectra show prominent C II 6580 {AA} absorption feature. The C II 6580 {AA} line velocity measured from the observed spectra is lower than the velocity of Si II 6355 {AA}, which could be due to a line of sight effect. The synthetic spectral fits to the pre-maximum spectra using syn++ indicate the presence of a high velocity component in the Si II absorption, in addition to a photospheric component. Fitting the observed spectrum with the spectral synthesis code TARDIS, the mass of unburned C in the ejecta is estimated to be $sim 0.019$~$M_{odot}$. The peak bolometric luminosity is $L^{bol}_{peak} = 1.43times10^{43}$ erg s$^{-1}$. The radiation diffusion model fit to the bolometric light curve indicates $0.61pm0.02$ $M_odot$ of $^{56}$Ni is synthesized in the explosion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا