ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-edge-colouring doublecross cubic graphs

396   0   0.0 ( 0 )
 نشر من قبل Robin Thomas
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A graph is apex if there is a vertex whose deletion makes the graph planar, and doublecross if it can be drawn in the plane with only two crossings, both incident with the infinite region in the natural sense. In 1966, Tutte conjectured that every two-edge-connected cubic graph with no Petersen graph minor is three-edge-colourable. With Neil Robertson, two of us showed that this is true in general if it is true for apex graphs and doublecross graphs. In another paper, two of us solved the apex case, but the doublecross case remained open. Here we solve the doublecross case; that is, we prove that every two-edge-connected doublecross cubic graph is three-edge-colourable. The proof method is a variant on the proof of the four-colour theorem.



قيم البحث

اقرأ أيضاً

Soon after his 1964 seminal paper on edge colouring, Vizing asked the following question: can an optimal edge colouring be reached from any given proper edge colouring through a series of Kempe changes? We answer this question in the affirmative for triangle-free graphs.
This paper disproves a conjecture of Wang, Wu, Yan and Xie, and answers in negative a question in Dvorak, Pekarek and Sereni. In return, we pose five open problems.
Following a given ordering of the edges of a graph $G$, the greedy edge colouring procedure assigns to each edge the smallest available colour. The minimum number of colours thus involved is the chromatic index $chi(G)$, and the maximum is the so-cal led Grundy chromatic index. Here, we are interested in the restricted case where the ordering of the edges builds the graph in a connected fashion. Let $chi_c(G)$ be the minimum number of colours involved following such an ordering. We show that it is NP-hard to determine whether $chi_c(G)>chi(G)$. We prove that $chi(G)=chi_c(G)$ if $G$ is bipartite, and that $chi_c(G)leq 4$ if $G$ is subcubic.
A (not necessarily proper) vertex colouring of a graph has clustering $c$ if every monochromatic component has at most $c$ vertices. We prove that planar graphs with maximum degree $Delta$ are 3-colourable with clustering $O(Delta^2)$. The previous b est bound was $O(Delta^{37})$. This result for planar graphs generalises to graphs that can be drawn on a surface of bounded Euler genus with a bounded number of crossings per edge. We then prove that graphs with maximum degree $Delta$ that exclude a fixed minor are 3-colourable with clustering $O(Delta^5)$. The best previous bound for this result was exponential in $Delta$.
Curve pseudo-visibility graphs generalize polygon and pseudo-polygon visibility graphs and form a hereditary class of graphs. We prove that every curve pseudo-visibility graph with clique number $omega$ has chromatic number at most $3cdot 4^{omega-1} $. The proof is carried through in the setting of ordered graphs; we identify two conditions satisfied by every curve pseudo-visibility graph (considered as an ordered graph) and prove that they are sufficient for the claimed bound. The proof is algorithmic: both the clique number and a colouring with the claimed number of colours can be computed in polynomial time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا