ﻻ يوجد ملخص باللغة العربية
The fundamental problem considered in this paper is What is the textit{energy} consumed for the implementation of a emph{compressive sensing} decoding algorithm on a circuit?. Using the information-friction framework, we examine the smallest amount of textit{bit-meters} as a measure for the energy consumed by a circuit. We derive a fundamental lower bound for the implementation of compressive sensing decoding algorithms on a circuit. In the setting where the number of measurements scales linearly with the sparsity and the sparsity is sub-linear with the length of the signal, we show that the textit{bit-meters} consumption for these algorithms is order-tight, i.e., it matches the lower bound asymptotically up to a constant factor. Our implementations yield interesting insights into design of energy-efficient circuits that are not captured by the notion of computational efficiency alone.
This paper considers solving the unconstrained $ell_q$-norm ($0leq q<1$) regularized least squares ($ell_q$-LS) problem for recovering sparse signals in compressive sensing. We propose two highly efficient first-order algorithms via incorporating the
Distributed Compressive Sensing (DCS) improves the signal recovery performance of multi signal ensembles by exploiting both intra- and inter-signal correlation and sparsity structure. However, the existing DCS was proposed for a very limited ensemble
Compressive sensing has shown significant promise in biomedical fields. It reconstructs a signal from sub-Nyquist random linear measurements. Classical methods only exploit the sparsity in one domain. A lot of biomedical signals have additional struc
A range of efficient wireless processes and enabling techniques are put under a magnifier glass in the quest for exploring different manifestations of correlated processes, where sub-Nyquist sampling may be invoked as an explicit benefit of having a
In most compressive sensing problems l1 norm is used during the signal reconstruction process. In this article the use of entropy functional is proposed to approximate the l1 norm. A modified version of the entropy functional is continuous, different