ترغب بنشر مسار تعليمي؟ اضغط هنا

Neuromimetic Circuits with Synaptic Devices based on Strongly Correlated Electron Systems

177   0   0.0 ( 0 )
 نشر من قبل Sieu Ha
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

Strongly correlated electron systems such as the rare-earth nickelates (RNiO3, R = rare-earth element) can exhibit synapse-like continuous long term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and non-associative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogues may provide insight into biological processes such as decision making, learning and adaptation, while facilitating advanced parallel information processing in hardware.



قيم البحث

اقرأ أيضاً

We reexamine the Yang-Yang-Takahashi method of deriving the thermodynamic Bethe ansatz equations which describe strongly correlated electron systems of fundamental physical interest, such as the Hubbard, $s-d$ exchange (Kondo) and Anderson models. It is shown that these equations contain some additional terms which may play an important role in the physics of the systems.
We introduce a new mathematical object, the fermionant ${mathrm{Ferm}}_N(G)$, of type $N$ of an $n times n$ matrix $G$. It represents certain $n$-point functions involving $N$ species of free fermions. When N=1, the fermionant reduces to the determin ant. The partition function of the repulsive Hubbard model, of geometrically frustrated quantum antiferromagnets, and of Kondo lattice models can be expressed as fermionants of type N=2, which naturally incorporates infinite on-site repulsion. A computation of the fermionant in polynomial time would solve many interesting fermion sign problems.
226 - Marcello Civelli 2007
In this thesis we study the strongly-correlated-electron physics of the longstanding H-Tc-superconductivity problem using a non-perturbative method, the Dynamical Mean Field Theory (DMFT), capable to go beyond standard perturbation-theory techniques. DMFT is by construction a local theory which neglects spatial correlation. Experiments have however shown that the latter is a fundamental property of cuprate materials. In a first step, we approach the problem of spatial correlation in the normal state of cuprate materials using a phenomenological Fermi-Liquid-Boltzmann model. We then introduce and develop in detail an extension to DMFT, the Cellular Dynamical Mean Field Theory (CDMFT), capable of considering short-ranged spatial correlation in a system, and we implement it using the exact diagonalization algorithm . After benchmarking CDMFT with the exact one-dimensional solution of the Hubbard Model, we employ it to study the density-driven Mott metal-insulator transition in the two-dimensional Hubbard Model, focusing in particular on the anomalous properties of the doped normal state close to the Mott insulator. We finally study the superconducting state. We show that within CDMFT the one-band Hubbard Model supports a d-wave superconductive state, which strongly departs from the standard BCS theory. We conjecture a link between the instabilities found in the normal state and the onset of superconductivity.
Recent progress in neutron spin-echo spectroscopy by means of longitudinal Modulation of IntEnsity with Zero Effort (MIEZE) is reviewed. Key technical characteristics are summarized which highlight that the parameter range accessible in momentum and energy, as well as its limitations, are extremely well understood and controlled. Typical experimental data comprising quasi-elastic and inelastic scattering are presented, featuring magneto-elastic coupling and crystal field excitations in Ho2Ti2O7, the skyrmion lattice to paramagnetic transition under applied magnetic field in MnSi, ferromagnetic criticality and spin waves in Fe. In addition bench marking studies of the molecular dynamics in H2O are reported. Taken together, the advantages of MIEZE spectroscopy in studies at small and intermediate momentum transfers comprise an exceptionally wide dynamic range of over seven orders of magnitude, the capability to perform straight forward studies on depolarizing samples or under depolarizing sample environments, as well as on incoherently scattering materials.
100 - V. Zlatic 2005
A number of recent experiments report the low-temperature thermopower $alpha$ and specific heat coefficients $gamma=C_V/T$ of strongly correlated electron systems. Describing the charge and heat transport in a thermoelectric by transport equations, a nd assuming that the charge current and the heat current densities are proportional to the number density of the charge carriers, we obtain a simple mean-field relationship between $alpha$ and the entropy density $cal S$ of the charge carriers. We discuss corrections to this mean-field formula and use results obtained for the periodic Anderson and the Falicov-Kimball models to explain the concentration (chemical pressure) and temperature dependence of $alpha/gamma T$ in EuCu$_2$(Ge$_{1-x}$Si$_x$)$_2$, CePt$_{1-x}$Ni$_x$, and YbIn$_{1-x}$Ag${_x}$Cu$_4$ intermetallic compounds. % We also show, using the poor mans mapping which approximates the periodic Anderson lattice by the single impurity Anderson model, that the seemingly complicated behavior of $alpha(T)$ can be explained in simple terms and that the temperature dependence of $alpha(T)$ at each doping level is consistent with the magnetic character of 4{it f} ions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا