ﻻ يوجد ملخص باللغة العربية
While many intermediate- and high-mass main sequence stars are rapidly and differentially rotating, the effects of rotation on oscillation modes are poorly known. In this communication we present a first study of axisymmetric gravito-inertial modes in the radiative zone of a differentially rotating star. We consider a simplified model where the radiative zone of the star is a linearly stratified rotating fluid within a spherical shell, with differential rotation due to baroclinic effects. We solve the eigenvalue problem with high-resolution spectral computations and determine the propagation domain of the waves through the theory of characteristics. We explore the propagation properties of two kinds of modes: those that can propagate in the entire shell and those that are restricted to a subdomain. Some of the modes that we find concentrate kinetic energy around short-period shear layers known as attractors. We describe various geometries for the propagation domains, conditioning the surface visibility of the corresponding modes.
Oscillations have been detected in a variety of stars, including intermediate- and high-mass main sequence stars. While many of these stars are rapidly and differentially rotating, the effects of rotation on oscillation modes are poorly known. In thi
The gravito-inertial waves propagating over a shellular baroclinic flow inside a rotating spherical shell are analysed using the Boussinesq approximation. The wave properties are examined by computing paths of characteristics in the non-dissipative l
We investigate the asymptotic properties of axisymmetric inertial modes propagating in a spherical shell when viscosity tends to zero. We identify three kinds of eigenmodes whose eigenvalues follow very different laws as the Ekman number $E$ becomes
Star-planet tidal interactions may result in the excitation of inertial waves in the convective region of stars. In low-mass stars, their dissipation plays a prominent role in the long-term orbital evolution of short-period planets. Turbulent convect
Context. OB stars are important building blocks of the Universe, but we have only a limited sample of them well understood enough from an asteroseismological point of view to provide feedback on the current evolutionary models. Our study adds one spe