ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravito-inertial modes in a differentially rotating spherical shell

258   0   0.0 ( 0 )
 نشر من قبل Giovanni Mirouh
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While many intermediate- and high-mass main sequence stars are rapidly and differentially rotating, the effects of rotation on oscillation modes are poorly known. In this communication we present a first study of axisymmetric gravito-inertial modes in the radiative zone of a differentially rotating star. We consider a simplified model where the radiative zone of the star is a linearly stratified rotating fluid within a spherical shell, with differential rotation due to baroclinic effects. We solve the eigenvalue problem with high-resolution spectral computations and determine the propagation domain of the waves through the theory of characteristics. We explore the propagation properties of two kinds of modes: those that can propagate in the entire shell and those that are restricted to a subdomain. Some of the modes that we find concentrate kinetic energy around short-period shear layers known as attractors. We describe various geometries for the propagation domains, conditioning the surface visibility of the corresponding modes.



قيم البحث

اقرأ أيضاً

Oscillations have been detected in a variety of stars, including intermediate- and high-mass main sequence stars. While many of these stars are rapidly and differentially rotating, the effects of rotation on oscillation modes are poorly known. In thi s communication we present a first study on axisymmetric gravito-inertial modes in the radiative zone of a differentially rotating star. These modes probe the deep layers of the star around its convective core. We consider a simplified model where the radiative zone of a star is a linearly stratified rotating fluid within a spherical shell, with differential rotation due to baroclinic effects. We solve the eigenvalue problem with high-resolution spectral simulations and determine the propagation domain of the waves through the theory of characteristics. We explore the propagation properties of two kinds of modes: those that can propagate in the entire shell and those that are restricted to a subdomain. Some of the modes that we find concentrate kinetic energy around short-period shear layers known as attractors. We characterise these attractors by the dependence of their Lyapunov exponent with the BV frequency of the background and the oscillation frequency of the mode. Finally, we note that, as modes associated with short-period attractors form dissipative structures, they could play an important role for tidal interactions but should be dismissed in the interpretation of observed oscillation frequencies.
The gravito-inertial waves propagating over a shellular baroclinic flow inside a rotating spherical shell are analysed using the Boussinesq approximation. The wave properties are examined by computing paths of characteristics in the non-dissipative l imit, and by solving the full dissipative eigenvalue problem using a high-resolution spectral method. Gravito-inertial waves are found to obey a mixed-type second-order operator and to be often focused around short-period attractors of characteristics or trapped in a wedge formed by turning surfaces and boundaries. We also find eigenmodes that show a weak dependence with respect to viscosity and heat diffusion just like truly regular modes. Some axisymmetric modes are found unstable and likely destabilized by baroclinic instabilities. Similarly, some non-axisymmetric modes that meet a critical layer (or corotation resonance) can turn unstable at sufficiently low diffusivities. In all cases, the instability is driven by the differential rotation. For many modes of the spectrum, neat power laws are found for the dependence of the damping rates with diffusion coefficients, but the theoretical explanation for the exponent values remains elusive in general. The eigenvalue spectrum turns out to be very rich and complex, which lets us suppose an even richer and more complex spectrum for rotating stars or planets that own a differential rotation driven by baroclinicity.
We investigate the asymptotic properties of axisymmetric inertial modes propagating in a spherical shell when viscosity tends to zero. We identify three kinds of eigenmodes whose eigenvalues follow very different laws as the Ekman number $E$ becomes very small. First are modes associated with attractors of characteristics that are made of thin shear layers closely following the periodic orbit traced by the characteristic attractor. Second are modes made of shear layers that connect the critical latitude singularities of the two hemispheres of the inner boundary of the spherical shell. Third are quasi-regular modes associated with the frequency of neutral periodic orbits of characteristics. We thoroughly analyse a subset of attractor modes for which numerical solutions point to an asymptotic law governing the eigenvalues. We show that three length scales proportional to $E^{1/6}$, $E^{1/4}$ and $E^{1/3}$ control the shape of the shear layers that are associated with these modes. These scales point out the key role of the small parameter $E^{1/12}$ in these oscillatory flows. With a simplified model of the viscous Poincare equation, we can give an approximate analytical formula that reproduces the velocity field in such shear layers. Finally, we also present an analysis of the quasi-regular modes whose frequencies are close to $sin(pi/4)$ and explain why a fluid inside a spherical shell cannot respond to any periodic forcing at this frequency when viscosity vanishes.
Star-planet tidal interactions may result in the excitation of inertial waves in the convective region of stars. In low-mass stars, their dissipation plays a prominent role in the long-term orbital evolution of short-period planets. Turbulent convect ion can sustain differential rotation in their envelope, with an equatorial acceleration (as in the Sun) or deceleration, which can modify the waves propagation properties. We explore in this first paper the general propagation properties of free linear inertial waves in a differentially rotating homogeneous fluid inside a spherical shell. We assume that the angular velocity background flow depends on the latitudinal coordinate only, close to what is expected in the external convective envelope of low-mass stars. We use i) an analytical approach in the inviscid case to get the dispersion relation, from which we compute the characteristic trajectories along which energy propagates. This allows us to study the existence of attractor cycles and infer the different families of inertial modes; ii) high-resolution numerical calculations based on a spectral method for the viscous problem. We find that modes that propagate in the whole shell (D modes) behave the same way as with solid-body rotation. However, another family of inertial modes exists (DT modes), which can propagate only in a restricted part of the convective zone. Our study shows that they are less common than D modes and that the characteristic rays and shear layers often focus towards a wedge - or point-like attractor. More importantly, we find that for non-axisymmetric oscillation modes, shear layers may cross a corotation resonance with a local accumulation of kinetic energy. Their damping rate scales very differently from what we obtain for standard D modes and we show an example where it is independent of viscosity (Ekman number) in the astrophysical regime in which it is small.
Context. OB stars are important building blocks of the Universe, but we have only a limited sample of them well understood enough from an asteroseismological point of view to provide feedback on the current evolutionary models. Our study adds one spe cial case to this sample, with more observational constraints than for most of these stars. Aims. Our goal is to analyse and interpret the pulsational behaviour of the B3 IV star HD 43317 using the CoRoT light curve along with the ground-based spectroscopy gathered by the Harps instrument. This way we continue our efforts to map the Beta Cep and SPB instability strips. Methods. We used different techniques to reveal the abundances and fundamental stellar parameters from the newly-obtained high-resolution spectra. We used various time-series analysis tools to explore the nature of variations present in the light curve. We calculated the moments and used the pixel-by-pixel method to look for line profile variations in the high-resolution spectra. Results. We find that HD 43317 is a single fast rotator (v_rot ~ 50% v_crit) and hybrid SPB/Beta Cep-type pulsator with Solar metal abundances. We interpret the variations in photometry and spectroscopy as a result of rotational modulation connected to surface inhomogeneities, combined with the presence of both g and p mode pulsations. We detect a series of ten consecutive frequencies with an almost constant period spacing of 6339 s as well as a second shorter sequence consisting of seven frequencies with a spacing of 6380 s. The dominant frequencies fall in the regime of gravito-inertial modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا