ﻻ يوجد ملخص باللغة العربية
We demonstrate the photonic Floquet topological insulator (PFTI) in an atomic vapor with nonlinear susceptibilities. The interference of three coupling fields splits the energy levels periodically to form a periodic refractive index structure with honeycomb symmetry that can be adjusted by the choice of frequency detunings and intensities of the coupling fields, which all affect the appearance of Dirac cones in the momentum space. When the honeycomb lattice sites are helically ordered along the propagation direction, we obtain a PFTI in the atomic vapor in which an obliquely incident beam moves along the zigzag edge without scattering energy into the PFTI, due to the confinement of the edge states. The appearance of Dirac cones and the formation of PFTI is strongly affected by the nonlinear susceptibilities; i.e. the PFTI can be shut off by the third-order nonlinear susceptibility and re-opened up by the fifth-order one.
Edge modes in topological insulators are known to be robust against defects. We investigate if this also holds true when the defect is not static, but varies in time. We study the influence of defects with time-dependent coupling on the robustness of
Photonic topological insulators (PTIs) exhibit robust photonic edge states protected by band topology, similar to electronic edge states in topological band insulators. Standard band theory does not apply to amorphous phases of matter, which are form
The hallmark feature of topological insulators renders edge transport virtually impervious to scattering at defects and lattice disorder. In our work, we experimentally demonstrate a topological system, using a photonic platform, in which the very ex
The discovery of photonic topological insulators (PTIs) has opened the door to fundamentally new topological states of light.Current time-reversal-invariant PTIs emulate either the quantum spin Hall (QSH) effect or the quantum valley Hall (QVH) effec
We show the presence of Floquet-Weyl and Floquet-topological-insulator phases in a stacked two-dimensional ring-network lattice. The Weyl points in the three-dimensional Brillouin zone and Fermi-arc surface states are clearly demonstrated in the quas