ﻻ يوجد ملخص باللغة العربية
We use spatially extended measurements of Ly$alpha$ as well as less optically thick emission lines from an $approx$80 kpc Ly$alpha$ nebula at $zapprox1.67$ to assess the role of resonant scattering and to disentangle kinematic signatures from Ly$alpha$ radiative transfer effects. We find that the Ly$alpha$, CIV, HeII, and CIII] emission lines all tell a similar story in this system, and that the kinematics are broadly consistent with large-scale rotation. First, the observed surface brightness profiles are similar in extent in all four lines, strongly favoring a picture in which the Ly$alpha$ photons are produced in situ instead of being resonantly scattered from a central source. Second, we see low kinematic offsets between Ly$alpha$ and the less optically thick HeII line ($sim$100-200 km s$^{-1}$), providing further support for the argument that the Ly$alpha$ and other emission lines are all being produced within the spatially extended gas. Finally, the full velocity field of the system shows coherent velocity shear in all emission lines: $approx$500 km s$^{-1}$ over the central $approx$50 kpc of the nebula. The kinematic profiles are broadly consistent with large-scale rotation in a gas disk that is at least partially stable against collapse. These observations suggest that the Ly$alpha$ nebula represents accreting material that is illuminated by an offset, hidden AGN or distributed star formation, and that is undergoing rotation in a clumpy and turbulent gas disk. With an implied mass of M(<R=20 kpc)$sim3times10^{11}$ $M_{odot}$, this system may represent the early formation of a large Milky Way mass galaxy or galaxy group.
With a projected size of about 450 kpc at z~2.3, the Slug Ly-alpha nebula is a rare laboratory to study, in emission, the properties of the intergalactic gas in the Cosmic Web. Since its discovery, the Slug has been the subject of several spectroscop
Ly$alpha$ emission is a standard tracer of starburst galaxies at high redshift. However, a number of local Ly$alpha$ emitters (LAEs) are X-ray sources, suggesting a possible origin of Ly$alpha$ photons other than young, hot stars, and which may be ac
We exploit wide-field Ly$alpha$ imaging with Subaru to probe the environment around TN J1338-1942, a powerful radio galaxy with a >100 kpc Ly$alpha$ halo at z=4.11. We used a sample of Ly$alpha$ emitters (LAEs) down to $log(L_{rm Lyalpha} [erg, s^{-1
Context. Searching for high-redshift galaxies is a field of intense activity in modern observational cosmology that will continue to grow with future ground-based and sky observatories. Over the last few years, a lot has been learned about the high-z
The well-known quasar SDSS J095253.83+011421.9 (J0952+0114) at z=3.02 has one of the most peculiar spectra discovered so far, showing the presence of narrow Ly$alpha$ and broad metal emission lines. Although recent studies have suggested that a Proxi