ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovering the QCD Axion with Black Holes and Gravitational Waves

229   0   0.0 ( 0 )
 نشر من قبل Xinlu Huang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Advanced LIGO may be the first experiment to detect gravitational waves. Through superradiance of stellar black holes, it may also be the first experiment to discover the QCD axion with decay constant above the GUT scale. When an axions Compton wavelength is comparable to the size of a black hole, the axion binds to the black hole, forming a gravitational atom. Through the superradiance process, the number of axions occupying the bound levels grows exponentially, extracting energy and angular momentum from the black hole. Axions transitioning between levels of the gravitational atom and axions annihilating to gravitons can produce observable gravitational wave signals. The signals are long-lasting, monochromatic, and can be distinguished from ordinary astrophysical sources. We estimate up to O(1) transition events at aLIGO for an axion between 10^-11 and 10^-10 eV and up to 10^4 annihilation events for an axion between 10^-13 and 10^-11 eV. In the event of a null search, aLIGO can constrain the axion mass for a range of rapidly spinning black hole formation rates. Axion annihilations are also promising for much lighter masses at future lower-frequency gravitational wave observatories; the rates have large uncertainties, dominated by supermassive black hole spin distributions. Our projections for aLIGO are robust against perturbations from the black hole environment and account for our updated exclusion on the QCD axion of 6*10^-13 eV < ma < 2*10^-11 eV suggested by stellar black hole spin measurements.



قيم البحث

اقرأ أيضاً

Supermassive black hole binary mergers generate a stochastic gravitational wave background detectable by pulsar timing arrays. While the amplitude of this background is subject to significant uncertainties, the frequency dependence is a robust predic tion of general relativity. We show that the effects of new forces beyond the Standard Model can modify this prediction and introduce unique features into the spectral shape. In particular, we consider the possibility that black holes in binaries are charged under a new long-range force, and we find that pulsar timing arrays are capable of robustly detecting such forces. Supermassive black holes and their environments can acquire charge due to high-energy particle production or dark sector interactions, making the measurement of the spectral shape a powerful test of fundamental physics.
Probing the QCD axion dark matter (DM) hypothesis is extremely challenging as the axion interacts very weakly with Standard Model particles. We propose a new avenue to test the QCD axion DM via transient radio signatures coming from encounters betwee n neutron stars (NSs) and axion minihalos around primordial black holes (PBHs). We consider a general QCD axion scenario in which the PQ symmetry breaking occurs before (or during) inflation coexisting with a small fraction of DM in the form of PBHs. The PBHs will unavoidably acquire around them axion minihalos with the typical length scale of parsecs. The axion density in the minihalos may be much higher than the local DM density, and the presence of these compact objects in the Milky Way today provides a novel chance for testing the axion DM hypothesis. We study the evolution of the minihalo mass distribution in the Galaxy accounting for tidal forces and estimate the encounter rate between NSs and the dressed PBHs. We find that the encounters give rise to transient line-like emission of radio frequency photons produced by the resonant axion-photon conversion in the NS magnetosphere and the characteristic signal could be detectable with the sensitivity of current and prospective radio telescopes.
113 - Horng Sheng Chia 2020
The direct detection of gravitational waves offers an exciting new window onto our Universe. At the same time, multiple observational evidence and theoretical considerations motivate the presence of physics beyond the Standard Model. In this thesis, we explore new ways of probing particle physics in the era of gravitational-wave astronomy. We focus on the signatures of ultralight bosons on the gravitational waves emitted by binary systems, demonstrating how binary black holes are novel detectors of this class of dark matter. We also discuss probes of other types of new physics through their finite-size imprints on gravitational waveforms, and examine the extent to which current template-bank searches could be used to detect these signals. In the first two chapters of this thesis, we review several aspects of gravitational-wave physics and particle physics at the weak coupling frontier; we hope the reader would find these reviews helpful in delving further into the literature and in their research.
88 - Yang Bai , Vernon Barger , 2016
As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around $10^{-11},M_{odot}$. In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. We study the properties of the HAS and find that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and the hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around $10^{13}~mbox{W}times(m_a/5~mbox{meV})^4$, to make these objects luminous point sources. High resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.
We argue that near-future detections of gravitational waves from merging black hole binaries can test a long-standing proposal, originally due Bekenstein and Mukhanov, that the areas of black hole horizons are quantized in integer multiples of the Pl anck area times an $mathcal O(1)$ dimensionless constant $alpha$. This condition quantizes the frequency of radiation that can be absorbed or emitted by a black hole. If this quantization applies to the ring down gravitational radiation emitted immediately after a black hole merger, a single measurement consistent with the predictions of classical general relativity would rule out most or all (depending on the spin of the hole) of the extant proposals in the literature for the value of $alpha$. A measurement of two such events for final black holes with substantially different spins would rule out the proposal for any $alpha$. If the modification of general relativity is confined to the near-horizon region within the holes light ring and does not affect the initial ring down signal, a detection of echoes with characteristic properties could still confirm the proposal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا