ترغب بنشر مسار تعليمي؟ اضغط هنا

Positive solutions to some asymptotically linear fractional Schrodinger equations

200   0   0.0 ( 0 )
 نشر من قبل Jinguo Zhang
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is devoted to prove the existence and nonexistence of positive solutions for a class of fractional Schrodinger equation in RN of the We apply a new methods to obtain the existence of positive solutions when f(u) is asymptotically linear with respect to u at infinity.



قيم البحث

اقرأ أيضاً

In this work we shall review some of our recent results concerning unique continuation properties of solutions of Schrodinger equations. In this equations we include linear ones with a time depending potential and semi-linear ones.
In this paper we deal with the multiplicity of positive solutions to the fractional Laplacian equation begin{equation*} (-Delta)^{frac{alpha}{2}} u=lambda f(x)|u|^{q-2}u+|u|^{2^{*}_{alpha}-2}u, quadtext{in},,Omega, u=0,text{on},,partialOmega, end {equation*} where $Omegasubset mathbb{R}^{N}(Ngeq 2)$ is a bounded domain with smooth boundary, $0<alpha<2$, $(-Delta)^{frac{alpha}{2}}$ stands for the fractional Laplacian operator, $fin C(Omegatimesmathbb{R},mathbb{R})$ may be sign changing and $lambda$ is a positive parameter. We will prove that there exists $lambda_{*}>0$ such that the problem has at least two positive solutions for each $lambdain (0,,,lambda_{*})$. In addition, the concentration behavior of the solutions are investigated.
We investigate the soliton dynamics for the fractional nonlinear Schrodinger equation by a suitable modulational inequality. In the semiclassical limit, the solution concentrates along a trajectory determined by a Newtonian equation depending of the fractional diffusion parameter.
This article concerns the fractional elliptic equations begin{equation*}(-Delta)^{s}u+lambda V(x)u=f(u), quad uin H^{s}(mathbb{R}^N), end{equation*}where $(-Delta)^{s}$ ($sin (0,,,1)$) denotes the fractional Laplacian, $lambda >0$ is a parameter, $ Vin C(mathbb{R}^N)$ and $V^{-1}(0)$ has nonempty interior. Under some mild assumptions, we establish the existence of nontrivial solutions. Moreover, the concentration of solutions is also explored on the set $V^{-1}(0)$ as $lambdatoinfty$.
In this article, exact traveling wave solutions of a Wick-type stochastic nonlinear Schr{o}dinger equation and of a Wick-type stochastic fractional Regularized Long Wave-Burgers (RLW-Burgers) equation have been obtained by using an improved computati onal method. Specifically, the Hermite transform is employed for transforming Wick-type stochastic nonlinear partial differential equations into deterministic nonlinear partial differential equations with integral and fraction order. Furthermore, the required set of stochastic solutions in the white noise space is obtained by using the inverse Hermite transform. Based on the derived solutions, the dynamics of the considered equations are performed with some particular values of the physical parameters. The results reveal that the proposed improved computational technique can be applied to solve various kinds of Wick-type stochastic fractional partial differential equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا