ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-periodic solutions of massive scalar fields in AdS background: perturbative constructions

135   0   0.0 ( 0 )
 نشر من قبل Nakwoo Kim
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Nakwoo Kim




اسأل ChatGPT حول البحث

We consider scalar fields which are coupled to Einstein gravity with a negative cosmological constant, and construct periodic solutions perturbatively. In particular, we study tachyonic scalar fields whose mass is at or above the Breitenlohner-Freedman bound in four, five, and seven spacetime dimensions. The critical amplitude of the leading order perturbation, for which the perturbative expansion breaks down, increases as we consider less massive fields. We present various examples including a model with a self-interacting scalar field which is derived from a consistent truncation of IIB supergravity.



قيم البحث

اقرأ أيضاً

We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham-Gabadadze-Tolley (dRGT) massive gravity by directly solving the gravitat ional equations. Then, we study the thermodynamics of these Vaidya-AdS solutions by using the Minsner-Sharp energy and unified first law, which also shows that the massive gravity is in a thermodynamic equilibrium state. Moreover, we adopt the two-point correlation function at equal time to explore the thermalization process in the dual field theory, and to see how the graviton mass parameter affects this process from the viewpoint of AdS/CFT correspondence. Our results show that the graviton mass parameter will increase the holographic thermalization process.
We construct a family of very simple stationary solutions to gravity coupled to a massless scalar field in global AdS. They involve a constantly rising source for the scalar field at the boundary and thereby we name them pumping solutions. We constru ct them numerically in $D=4$. They are regular and, generically, have negative mass. We perform a study of linear and nonlinear stability and find both stable and unstable branches. In the latter case, solutions belonging to different sub-branches can either decay to black holes or to limiting cycles. This observation motivates the search for non-stationary exactly time-periodic solutions which we actually construct. We clarify the role of pumping solutions in the context of quasistatic adiabatic quenches. In $D=3$ the pumping solutions can be related to other previously known solutions, like magnetic or translationally-breaking backgrounds. From this we derive an analytic expression.
We formulate the second quantization of a charged scalar field in homogeneous, time-dependent electromagnetic fields, in which the Hamiltonian is an infinite system of decoupled, time-dependent oscillators for electric fields, but it is another infin ite system of coupled, time-dependent oscillators for magnetic fields. We then employ the quantum invariant method to find various quantum states for the charged field. For time-dependent electric fields, a pair of quantum invariant operators for each oscillator with the given momentum plays the role of the time-dependent annihilation and the creation operators, constructs the exact quantum states, and gives the vacuum persistence amplitude as well as the pair-production rate. We also find the quantum invariants for the coupled oscillators for the charged field in time-dependent magnetic fields and advance a perturbation method when the magnetic fields change adiabatically. Finally, the quantum state and the pair production are discussed when a time-dependent electric field is present in parallel to the magnetic field.
Force between static point particles coupled to a classical ultra-massive scalar field is calculated. The field potential is proportional to the modulus of the field. It turns out that the force exactly vanishes when the distance between the particle s exceeds certain finite value. Moreover, each isolated particle is surrounded by a compact cloud of the scalar field that completely screens its scalar charge.
125 - Z. Chang IHEP 2001
AdS dynamics for massive scalar field is studied both by solving exactly the equation of motion and by constructing bulk-boundary propagator. A Robertson-Walker-like metric is deduced from the familiar SO(2,n) invariant metric. The metric allows us t o present a time-like Killing vector, which is not only invariant under space-like transformations but also invariant under the isometric transformations of SO(2,n) in certain sense. A horizon appears in this coordinate system. Singularities of field variables at boundary are demonstrated explicitly. It is shown that there is a one-to-one correspondence among the exact solutions and the bulk fields obtained by using the bulk-boundary propagator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا