ترغب بنشر مسار تعليمي؟ اضغط هنا

Notes on the proof of the KKV conjecture

169   0   0.0 ( 0 )
 نشر من قبل R. P. Thomas
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Katz-Klemm-Vafa conjecture expresses the Gromov-Witten theory of K3 surfaces (and K3-fibred 3-folds in fibre classes) in terms of modular forms. Its recent proof gives the first non-toric geometry in dimension greater than 1 where Gromov-Witten theory is exactly solved in all genera. We survey the various steps in the proof. The MNOP correspondence and a new Pairs/Noether-Lefschetz correspondence for K3-fibred 3-folds transform the Gromov-Witten problem into a calculation of the full stable pairs theory of a local K3-fibred 3-fold. The stable pairs calculation is then carried out via degeneration, localisation, vanishing results, and new multiple cover formulae.



قيم البحث

اقرأ أيضاً

We review a combinatoric approach to the Hodge Conjecture for Fermat Varieties and announce new cases where the conjecture is true.
In this paper we give a new proof of the ELSV formula. First, we refine an argument of Okounkov and Pandharipande in order to prove (quasi-)polynomiality of Hurwitz numbers without using the ELSV formula (the only way to do that before used the ELSV formula). Then, using this polynomiality we give a new proof of the Bouchard-Mari~no conjecture. After that, using the correspondence between the Givental group action and the topological recursion coming from matrix models, we prove the equivalence of the Bouchard-Mari~no conjecture and the ELSV formula (it is a refinement of an argument by Eynard).
We prove a generalization of the Shapiro-Shapiro conjecture on Wronskians of polynomials, allowing the Wronskian to have complex conjugate roots. We decompose the real Schubert cell according to the number of real roots of the Wronski map, and define an orientation of each connected component. For each part of this decomposition, we prove that the topological degree of the restricted Wronski map is given as an evaluation of a symmetric group character. In the case where all roots are real, this implies that the restricted Wronski map is a topologically trivial covering map; in particular, this gives a new proof of the Shapiro-Shapiro conjecture.
74 - Laurent Manivel 2021
We prove a conjecture of Sturmfels, Timme and Zwiernik on the ML-degrees of linear covariance models in algebraic statistics. As in our previous works on linear concentration models, the proof ultimately relies on the computation of certain intersection numbers on the varieties of complete quadrics.
The Yau-Zaslow conjecture determines the reduced genus 0 Gromov-Witten invariants of K3 surfaces in terms of the Dedekind eta function. Classical intersections of curves in the moduli of K3 surfaces with Noether-Lefschetz divisors are related to 3-fo ld Gromov-Witten theory via the K3 invariants. Results by Borcherds and Kudla-Millson determine the classical intersections in terms of vector-valued modular forms. Proven mirror transformations can often be used to calculate the 3-fold invariants which arise. Via a detailed study of the STU model (determining special curves in the moduli of K3 surfaces), we prove the Yau-Zaslow conjecture for all curve classes on K3 surfaces. Two modular form identities are required. The first, the Klemm-Lerche-Mayr identity relating hypergeometric series to modular forms after mirror transformation, is proven here. The second, the Harvey-Moore identity, is proven by D. Zagier and presented in the paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا