ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark matter and dark energy from Bose-Einstein condensate

144   0   0.0 ( 0 )
 نشر من قبل Saurya Das
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that Dark Matter consisting of bosons of mass of about 1eV or less has critical temperature exceeding the temperature of the universe at all times, and hence would have formed a Bose-Einstein condensate at very early epochs. We also show that the wavefunction of this condensate, via the quantum potential it produces, gives rise to a cosmological constant which may account for the correct dark energy content of our universe. We argue that massive gravitons or axions are viable candidates for these constituents. In the far future this condensate is all that remains of our universe.



قيم البحث

اقرأ أيضاً

Recently, Kallosh and Linde have drawn attention to a new family of superconformal inflationary potentials, subsequently called $alpha$-attractors. The $alpha$-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the $alpha$-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the $alpha$-attractors, which we call $alpha$-dark matter ($alpha$DM), shares many of the attractive features of fuzzy dark matter, with $V(varphi) = frac{1}{2}m^2varphi^2$, while having none of its drawbacks. Like fuzzy dark matter, $alpha$DM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. $alpha$DM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, $langle wrangle simeq 0$, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the $m^2varphi^2$ potential in describing dark matter.
314 - Saurya Das 2018
Applying the seminal work of Bose in 1924 on what was later known as Bose-Einstein statistics, Einstein predicted in 1925 that at sufficiently low temperatures, a macroscopic fraction of constituents of a gas of bosons will drop down to the lowest av ailable energy state, forming a `giant molecule or a Bose-Einstein condensate (BEC), described by a `macroscopic wavefunction. In this article we show that when the BEC of ultralight bosons extends over cosmological length scales, it can potentially explain the origins of both dark matter and dark energy. We speculate on the nature of these bosons.
Dark energy/matter unification is first demonstrated within the framework of a simplified model. Geodetic evolution of a cosmological constant dominated bubble Universe, free of genuine matter, is translated into a specific FRW cosmology whose effe ctively induced dark component highly resembles the cold dark matter ansatz. The realistic extension constitutes a dark soliton which bridges past (radiation and/or matter dominated) and future (cosmological constant dominated) Einstein regimes; its experimental signature is a moderate redshift dependent cold dark matter deficiency function.
Non-canonical scalar fields with the Lagrangian ${cal L} = X^alpha - V(phi)$, possess the attractive property that the speed of sound, $c_s^{2} = (2,alpha - 1)^{-1}$, can be exceedingly small for large values of $alpha$. This allows a non-canonical f ield to cluster and behave like warm/cold dark matter on small scales. We demonstrate that simple potentials including $V = V_0coth^2{phi}$ and a Starobinsky-type potential can unify dark matter and dark energy. Cascading dark energy, in which the potential cascades to lower values in a series of discrete steps, can also work as a unified model. In all of these models the kinetic term $X^alpha$ plays the role of dark matter, while the potential term $V(phi)$ plays the role of dark energy.
Phenomenological implications of the Mimetic Tensor-Vector-Scalar theory (MiTeVeS) are studied. The theory is an extension of the vector field model of mimetic dark matter, where a scalar field is also incorporated, and it is known to be free from gh ost instability. In the absence of interactions between the scalar field and the vector field, the obtained cosmological solution corresponds to the General theory of Relativity (GR) with a minimally-coupled scalar field. However, including an interaction term between the scalar field and the vector field yields interesting dynamics. There is a shift symmetry for the scalar field with a flat potential, and the conserved Noether current, which is associated with the symmetry, behaves as a dark matter component. Consequently, the solution contains a cosmological constant, dark matter and a stiff matter fluid. Breaking the shift symmetry with a non-flat potential gives a natural interaction between dark energy and dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا