ترغب بنشر مسار تعليمي؟ اضغط هنا

Disappearing charged tracks in association with displaced leptons from supersymmetry

105   0   0.0 ( 0 )
 نشر من قبل Christoffer Petersson
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note we discuss a characteristic collider signature of models of gauge mediated supersymmetry breaking in which the selectron and smuon are mass-degenerate co-NLSP. In these models, all processes involving superpartners give rise to two NLSP selectrons or smuons, each of which subsequently decays to a nearly massless LSP gravitino and an electron or a muon. In a large region of the parameter space, the NLSPs travel macroscopic distances, of the order 0.1-1000 mm, before they decay. Hence, these models give rise to collider signatures involving charged tracks that end at vertices, which are inside the detector volume but displaced with respect to the original collision point, from which an electron or a muon is emitted. In order to probe this class of models we propose a search for disappearing charged tracks in association with displaced electrons or muons.



قيم البحث

اقرأ أيضاً

134 - Gordon Kane , Ran Lu , Bob Zheng 2012
In this note, we advocate a new method for identifying gluino pair production events at the LHC. The method is motivated by and works for theories with heavy squarks and Wino-like LSPs (with nearly degenerate LSP and chargino). Such theories are well motivated and their gluinos typically have a O(50%) branching ratio to charged Winos. Observing the track of a long lived charged Wino produced from gluino decay could give a clear identification of a gluino event. Charged Wino NLSPs produced in colliders can be long-lived enough to leave a reconstructable high pT charged track before decaying into a soft pion (or a soft lepton) and the LSP, a signature with low SM background. By supplementing the canonical gluino search strategy with a search for these stiff chargino tracks, our results suggest it will be possible to find gluinos with significantly less luminosity. In addition, we describe a procedure for obtaining a kinematic measurement of the gluino mass using the three momenta of the reconstructed chargino tracks. With measurements of the gluino mass and cross section, it will be possible to determine the gluino spin, and confirm that the excess events are indeed due to a spin 1/2 superpartner. It may also be possible to use these stiff Wino tracks to obtain an approximate measurement of the chargino mass, and therefore the LSP (dark matter) mass.
120 - J. Albrecht , M. Artuso , K. Babu 2013
This is the report of the Intensity Frontier Charged Lepton Working Group of the 2013 Community Summer Study Snowmass on the Mississippi, summarizing the current status and future experimental opportunities in muon and tau lepton studies and their se nsitivity to new physics. These include searches for charged lepton flavor violation, measurements of magnetic and electric dipole moments, and precision measurements of the decay spectrum and parity-violating asymmetries.
100 - Yi Liao 2010
A mechanism has been suggested recently to generate the neutrino mass out of a dimension-seven operator. This is expected to relieve the tension between the occurrence of a tiny neutrino mass and the observability of other physics effects beyond it. Such a mechanism would inevitably entail lepton flavor violating effects. We study in this work the radiative and purely leptonic transitions of the light charged leptons. In so doing we make a systematic analysis of the flavor structure by providing a convenient parametrization of the mass matrices in terms of independent physical parameters and diagonalizing them explicitly. We illustrate our numerical results by sampling over two CP phases and one Yukawa coupling which are the essential parameters in addition to the heavy lepton mass. We find that with the stringent constraints coming from the muon decays and the muon-electron conversion in nuclei taken into account the decays of the tau lepton are severely suppressed in the majority of parameter space. There exist, however, small regions in which some tau decays can reach a level that is about 2 orders of magnitude below their current bounds.
112 - Di Zhang , Shun Zhou 2021
The canonical type-I seesaw model with three heavy Majorana neutrinos is one of the most natural extensions of the standard model (SM) to accommodate tiny Majorana masses of three ordinary neutrinos. At low-energy scales, Majorana neutrino masses and unitarity violation of lepton flavor mixing have been extensively discussed in the literature, which are respectively generated by the unique dimension-five Weinberg operator and one dimension-six operator in the seesaw effective field theory (SEFT) with the tree-level matching. In this work, we clarify that a self-consistent calculation of radiative decays of charged leptons $beta^- to alpha^- + gamma$ requires the SEFT with one-loop matching, where new six-dimensional operators emerge and make important contributions. For the first time, the Wilson coefficients of all the relevant six-dimensional operators are computed by carrying out the one-loop matching between the effective theory and full seesaw model, and applied to calculate the total rates of radiative decays of charged leptons.
We study the indirect effects of New Physics in the Higgs decay into four charged leptons, using an Effective Field Theory (EFT) approach to Higgs interactions. We evaluate the deviations induced by the EFT dimension-six operators in observables like partial decay width and various kinematic distributions, including angular observables, and compare them with the contribution of the full SM electroweak corrections. The calculation is implemented in an improved version of the event generator Hto4l, which can provide predictions in terms of different EFT-bases and is available for data analysis at the LHC. We also perform a phenomenological study in order to assess the benefits coming from the inclusion of differential information in the future analyses of very precise data which will be collected during the high luminosity phase of the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا