ﻻ يوجد ملخص باللغة العربية
We cross-correlate a cosmic microwave background (CMB) lensing map with the projected space densities of quasars to measure the bias and halo masses of a quasar sample split into obscured and unobscured populations, the first application of this method to distinct quasar subclasses. Several recent studies of the angular clustering of obscured quasars have shown that these objects likely reside in higher-mass halos compared to their unobscured counterparts. This has important implications for models of the structure and geometry of quasars, their role in growing supermassive black holes, and mutual quasar/host galaxy evolution. However, the magnitude and significance of this difference has varied from study to study. Using data from planck, wise, and SDSS, we follow up on these results using the independent method of CMB lensing cross-correlations. The region and sample are identical to that used for recent angular clustering measurements, allowing for a direct comparison of the CMB-lensing and angular clustering methods. At $z sim 1$, we find that the bias of obscured quasars is $b_q = 2.57 pm 0.24$, while that of unobscured quasars is $b_q = 1.89 pm 0.19$. This corresponds to halo masses of $log (M_h / M_{odot} h^{-1}) = 13.24_{-0.15}^{+0.14}$ (obscured) and $log (M_h / M_{odot} h^{-1}) = 12.71_{-0.13}^{+0.15}$ (unobscured). These results agree well with with those from angular clustering (well within $1sigma$), and confirm that obscured quasars reside in host halos $sim$3 times as massive as halos hosting unobscured quasars. This implies that quasars spend a significant portion of their lifetime in an obscured state, possibly more than one half of the entire active phase.
We present a spectroscopically complete sample of 147 infrared-color-selected AGN down to a 22 $mu$m flux limit of 20 mJy over the $sim$270 deg$^2$ of the SDSS Stripe 82 region. Most of these sources are in the QSO luminosity regime ($L_{rm bol} gtrs
We perform a statistical analysis of strong gravitational lensing by quasar hosts of background galaxies, in the two competing models of dark matter halos of quasars, HOD and CS models. Utilizing the BolshoiP Simulation we demonstrate that strong gra
We present the first measurement of the spatial clustering of mid-infrared selected obscured and unobscured quasars, using a sample in the redshift range 0.7 < z < 1.8 selected from the 9 deg^2 Bootes multiwavelength survey. Recently the Spitzer Spac
Clustering measurements of obscured and unobscured quasars show that obscured quasars reside in more massive dark matter halos than their unobscured counterparts. These results are inconsistent with simple unified (torus) scenarios, but might be expl
Recent studies of luminous infrared-selected active galactic nuclei (AGN) suggest that the reddest, most obscured objects display a higher angular clustering amplitude, and thus reside in higher-mass dark matter halos. This is a direct contradiction