ﻻ يوجد ملخص باللغة العربية
Describing time-dependent many-body systems where correlation effects play an important role remains a major theoretical challenge. In this paper we develop a time-dependent many-body theory that is based on the two-particle reduced density matrix (2-RDM). We develop a closed equation of motion for the 2-RDM employing a novel reconstruction functional for the three-particle reduced density matrix (3-RDM) that preserves norm, energy, and spin symmetries during time propagation. We show that approximately enforcing $N$-representability during time evolution is essential for achieving stable solutions. As a prototypical test case which features long-range Coulomb interactions we employ the one-dimensional model for lithium hydride (LiH) in strong infrared laser fields. We probe both one-particle observables such as the time-dependent dipole moment and two-particle observables such as the pair density and mean electron-electron interaction energy. Our results are in very good agreement with numerically exact solutions for the $N$-electron wavefunction obtained from the multiconfigurational time-dependent Hartree-Fock method.
In most nuclear many-body methods, observables are calculated using many-body wave functions explicitly. The variational two-particle reduced density matrix method is one of the few exceptions to the rule. Ground-state energies of both closed-shell a
By combining a parameterized Hermitian matrix, the realignment matrix of the bipartite density matrix $rho$ and the vectorization of its reduced density matrices, we present a family of separability criteria, which are stronger than the computable cr
Transient absorption is a very powerful observable in attosecond experiments on atoms, molecules and solids and is frequently used in experiments employing phase-locked few-cycle infrared and XUV laser pulses derived from high harmonic generation. We
A new ATSP2K module is presented for evaluating the electron density function of any multiconfiguration Hartree-Fock or configuration interaction wave function in the non relativistic or relativistic Breit-Pauli approximation. It is first stressed th
We study various methods to generate ensembles of random density matrices of a fixed size N, obtained by partial trace of pure states on composite systems. Structured ensembles of random pure states, invariant with respect to local unitary transforma