ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexistence of different magnetic moments in CeRuSn probed by polarized neutrons

187   0   0.0 ( 0 )
 نشر من قبل Karel Prokes
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the spin densities in CeRuSn determined at elevated and at low temperatures using polarized neutron diffraction. At 285 K, where the CeRuSn crystal structure, commensurate with the CeCoAl type, contains two different crystallographic Ce sites, we observe that one Ce site is clearly more susceptible to the applied magnetic field whereas the other is hardly polarizable. This finding clearly documents that distnictly different local environment of the two Ce sites causes the Ce ions to split into magnetic Ce3+ and non-magnetic Ce(4-delta)+ valence states. With lowering the temperature, the crystal structure transforms to a structure incommensurately modulated along the c axis. This leads to new inequivalent crystallographic Ce sites resulting in a re-distribution of spin densities. Our analysis using the simplest structural approximant shows that in this metallic system Ce ions co-exist in different valence states. Localized 4f states that fulfill the third Hunds rule are found to be close to the ideal Ce3+ state (at sites with the largest Ce-Ru interatomic distances) whereas Ce(4-delta)+ valence states are found to be itinerant and situated at Ce sites with much shorter Ce-Ru distances. The similarity to the famous alpha-gamma transition in elemental cerium is discussed.



قيم البحث

اقرأ أيضاً

The electronic and structural properties of a material are strongly determined by its symmetry. Changing the symmetry via a photoinduced phase transition offers new ways to manipulate material properties on ultrafast timescales. However, in order to identify when and how fast these phase transitions occur, methods that can probe the symmetry change in the time domain are required. We show that a time-dependent change in the coherent phonon spectrum can probe a change in symmetry of the lattice potential, thus providing an all-optical probe of structural transitions. We examine the photoinduced structural phase transition in VO2 and show that, above the phase transition threshold, photoexcitation completely changes the lattice potential on an ultrafast timescale. The loss of the equilibrium-phase phonon modes occurs promptly, indicating a non-thermal pathway for the photoinduced phase transition, where a strong perturbation to the lattice potential changes its symmetry before ionic rearrangement has occurred.
CeRuSn exhibits an extraordinary room temperature structure at 300~K with coexistence of two types of Ce ions, namely trivalent Ce$^{3+}$ and intermediate valent Ce$^{(4-delta)+}$, in a metallic environment. The ordered arrangement of these two Ce ty pes on specific crystallographic sites results in a doubling of the unit cell along the $c$-axis with respect to the basic monoclinic CeCoAl-type structure. Below room temperature, structural modulation transitions with very broad hysteresis have been reported from measurements of various bulk properties. X-ray diffraction revealed that at low temperatures the doubling of the CeCoAl type structure is replaced by a different modulated ground state, approximating a near tripling of the basic CeCoAl cell. The transition is accompanied by a significant contraction of the $c$ axis. We present new x-ray absorption near-edge spectroscopy data at the Ce L$_{3}$ absorption edge, measured on a freshly cleaved surface of a CeRuSn single crystal. In contrast to a previous report, the new data exhibit small but significant variations as function of temperature that are consistent with a transition of a fraction of Ce$^{3+}$ ions to the intermediate valence state, analogous to the $gamma rightarrow alpha$ transition in elemental cerium, when cooling through the structural transitions of CeRuSn. Such results in a valence-modulated state.
The S=1/2 Heisenberg spin chain compound SrCuO2 doped with different amounts of nickel (Ni), palladium (Pd), zinc (Zn) and cobalt (Co) has been studied by means of Cu nuclear magnetic resonance (NMR). Replacing only a few of the S=1/2 Cu ions with Ni , Pd, Zn or Co has a major impact on the magnetic properties of the spin chain system. In the case of Ni, Pd and Zn an unusual line broadening in the low temperature NMR spectra reveals the existence of an impurity-induced local alternating magnetization (LAM), while exponentially decaying spin-lattice relaxation rates $T_1^{-1}$ towards low temperatures indicate the opening of spin gaps. A distribution of gap magnitudes is proven by a stretched spin-lattice relaxation and a variation of $T_1^{-1}$ within the broad resonance lines. These observations depend strongly on the impurity concentration and therefore can be understood using the model of finite segments of the spin 1/2 antiferromagnetic Heisenberg chain, i.e. pure chain segmentation due to S = 0 impurities. This is surprising for Ni as it was previously assumed to be a magnetic impurity with S = 1 which is screened by the neighboring copper spins. In order to confirm the S = 0 state of the Ni, we performed x-ray absorption spectroscopy (XAS) and compared the measurements to simulated XAS spectra based on multiplet ligand-field theory. Furthermore, Zn doping leads to much smaller effects on both the NMR spectra and the spin-lattice relaxation rates, indicating that Zn avoids occupying Cu sites. For magnetic Co impurities, $T_1^{-1}$ does not obey the gap like decrease, and the low-temperature spectra get very broad. This could be related to the increase of the Neel temperature which was observed by recent muSR and susceptibility measurements, and is most likely an effect of the impurity spin $S eq0$.
At ambient temperatures, CeRuSn exhibits an extraordinary structure with a coexistence of two types of Ce ions in a metallic environment, namely trivalent Ce3+ and intermediate valent Ce(4-x)+. Charge ordering produces a doubling of the unit cell alo ng the c-axis with respect to the basic monoclinic CeCoAl type structure. Below room temperature, a phase transition with very broad hysteresis has been observed in various bulk properties like electrical resistivity, magnetic susceptibility, and specific heat. The present x-ray diffraction results show that at low temperatures the doubling of the CeCoAl type structure is replaced by an ill-defined modulated ground state. In this state, at least three different modulation periods compete, with the dominant mode close to a tripling of the basic cell. The transition is accompanied by a significant contraction of the c axis. XANES data suggest that the average Ce valence remains constant, thus the observed c axis contraction is not due to any valence transition. We propose a qualitative structure model with modified stacking sequences of Ce3+ and Ce(4-x)+ layers in the various modulated phases. Surprisingly, far below 100 K the modulated state is sensitive to x-ray irradiation at photon fluxes available at a synchrotron. With photon fluxes of order 10E12/s, the modulated ground state can be destroyed on a timescale of minutes and the doubling of the CeCoAl cell observed at room temperature is recovered. The final state is metastable at 10 K. Heating the sample above 60 K again leads to a recovery of the modulated state. Thus, CeRuSn exhibits both thermally and x-ray induced reversible transformations of the Ce3+/Ce(4-x)+ charge ordering pattern. Such a behavior is unique among any know intermetallic compound.
We have studied the magnetic torque in uranium monosulfide (US) single crystals to explore the magnetic anisotropy in this material. Uranium monosulfide crystallizes in cubic, NaCl-type of crystal structure and exhibits the largest magneto-crystallin e anisotropy observed in cubic systems. By performing detailed torque measurements we observe a strongly anisotropic behavior in the paramagnetic phase due to crystal defects and quadrupolar pair interactions. Our studies also confirm the presence of a large anisotropy in the ferromagnetic state of the US system with the <100>, <111>, and <110> directions being hard, easy, and intermediate axis, respectively. Furthermore, the anisotropy in the paramagnetic phase shows similar characteristics to the anisotropy observed in the ferromagnetic phase, as characterized by second and fourth rank susceptibility terms. The similarity of the anisotropic behaviors in paramagnetic and ferromagnetic phases is the consequence of strong magneto-elastic properties in this system, which possibly lead to the rhombohedral structural distortion, not only in the ferromagnetic phase but also in the paramagnetic phase (induced by applied magnetic fiield).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا