ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward an Empirical Theory of Pulsar Emission. X. On the Precursor and Postcursor Emission

179   0   0.0 ( 0 )
 نشر من قبل Rahul Basu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Precursors and postcursors (PPCs) are rare emission components detected in a handful of pulsars that appear beyond the main pulse emission, in some cases far away from it. In this paper we attempt to characterize the PPC emission in relation to the pulsar main pulse geometry. In our analysis we find that PPC components have properties very different from that of outer conal emission. The separation of the PPC components from the main pulse center remains constant with frequency. In addition the beam opening angles corresponding to the separation of PPC components from the pulsar center are much larger than the largest encountered in conal emission. Pulsar radio emission is believed to originate within the magnetic polar flux tubes due to the growth of instabilities in the outflowing relativistic plasma. Observationally, there is strong evidence that the main pulse emission originates at altitudes of about 50 neutron star radii for a canonical pulsar. Currently, the most plausible radio emission model that can explain main pulse emission is the coherent curvature radiation mechanism, wherein relativistic charged solitons are formed in a non-stationary electron-positron-pair plasma. The wider beam opening angles of PPC require the emission to emanate from larger altitudes as compared to the main pulse, if both these components originate by the same emission mechanism. We explore this possibility and find that this emission mechanism is probably inapplicable at the height of the PPC emission. We propose that the PPC emission represents a new type of radiation from pulsars with a mechanism different from that of the main pulse.



قيم البحث

اقرأ أيضاً

The five-component profile of the 2.7-ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the Binary Pulsar B1913+16, B1953+29 and J 1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.
119 - Joanna M. Rankin 2015
Two entwined problems have remained unresolved since pulsars were discovered nearly 50 years ago: the orientation of their polarized emission relative to the emitting magnetic field and the direction of putative supernova ``kicks relative to their ro tation axes. The rotational orientation of most pulsars can be inferred only from the (``fiducial) polarization angle of their radiation, when their beam points directly at the Earth and the emitting polar fluxtube field is $parallel$ to the rotation axis. Earlier studies have been unrevealing owing to the admixture of different types of radiation (core and conal, two polarization modes), producing both $parallel$ or $perp$ alignments. In this paper we analyze the some 50 pulsars having three characteristics: core radiation beams, reliable absolute polarimetry, and accurate proper motions. The ``fiducial polarization angle of the core emission, we then find, is usually oriented $perp$ to the proper-motion direction on the sky. As the primary core emission is polarized $perp$ to the projected magnetic field in Vela and other pulsars where X-ray imaging reveals the orientation, this shows that the proper motions usually lie $parallel$ to the rotation axes on the sky. Two key physical consequences then follow: first, to the extent that supernova ``kicks are responsible for pulsar proper motions, they are mostly $parallel$ to the rotation axis; and second that most pulsar radiation is heavily processed by the magnetospheric plasma such that the lowest altitude ``parent core emission is polarized $perp$ to the emitting field, propagating as the extraordinary (X) mode.
We present measurements of the Galactic halos X-ray emission for 110 XMM-Newton sight lines, selected to minimize contamination from solar wind charge exchange emission. We detect emission from few million degree gas on ~4/5 of our sight lines. The t emperature is fairly uniform (median = 2.22e6 K, interquartile range = 0.63e6 K), while the emission measure and intrinsic 0.5--2.0 keV surface brightness vary by over an order of magnitude (~(0.4-7)e-3 cm^-6 pc and ~(0.5-7)e-12 erg cm^-2 s^-1 deg^-2, respectively, with median detections of 1.9e-3 cm^-6 pc and 1.5e-12 erg cm^-2 s^-1 deg^-2, respectively). The high-latitude sky contains a patchy distribution of few million degree gas. This gas exhibits a general increase in emission measure toward the inner Galaxy in the southern Galactic hemisphere. However, there is no tendency for our observed emission measures to decrease with increasing Galactic latitude, contrary to what is expected for a disk-like halo morphology. The measured temperatures, brightnesses, and spatial distributions of the gas can be used to place constraints on models for the dominant heating sources of the halo. We provide some discussion of such heating sources, but defer comparisons between the observations and detailed models to a later paper.
Ultraluminous X-ray sources (ULXs) are extragalactic X-ray emitters located off-center of their host galaxy and with a luminosity in excess of a few ${10^{39}text{ erg s}^{-1}}$, if emitted isotropically. The discovery of periodic modulation revealed that in some ULXs the accreting compact object is a neutron star, indicating luminosities substantially above their Eddington limit. The most extreme object in this respect is ${NGC 5907~ULX-1}$ (ULX1), with a peak luminosity that is 500 times its Eddington limit. During a Chandra observation to probe a low state of ULX1, we detected diffuse X-ray emission at the position of ULX1. Its diameter is $2.7 pm 1.0$ arcsec and contains 25 photons, none below 0.8 keV. We interpret this extended structure as an expanding nebula powered by the wind of ULX1. Its diameter of about ${200text{ pc}}$, characteristic energy of ${sim 1.9text{ keV}}$, and luminosity of ${sim 2times10^{38}text{ erg s}^{-1}}$ imply a mechanical power of ${1.3times10^{41}text{ erg s}^{-1}}$ and an age ${sim 7 times 10^{4}text{ yr}}$. This interpretation suggests that a genuinely super-Eddington regime can be sustained for time scales much longer than the spin-up time of the neutron star powering the system. As the mechanical power from a single ULX nebula can rival the injection rate of cosmic rays of an entire galaxy, ULX nebulae could be important cosmic ray accelerators.
This paper reports new observations of pulsars B0943+10 and B1822--09 carried out with the Arecibo Observatory (AO) and the Giant Metrewave Radio Telescope (GMRT), respectively. Both stars exhibit two stable emission modes. We report the discovery in B0943+10 of a highly linearly polarized precursor component that occurs primarily in only one mode. This emission feature closely resembles B1822-09s precursor which also occurs brightly in only one mode. B0943+10s other mode is well known for its highly regular drifting subpulses that are apparently produced by a rotating carousel system of 20 beamlets. Similary, B1822-09 exhibits subpulse-modulation behavior only in the mode where its precursor is absent. We survey our 18 hours of B0943+10 observations and find that the sideband-modulation features, from which the carousel-rotation time can be directly determined, occur rarely--less than 5% of the time--but always indicating 20 beamlets. We present an analysis of B1822-09s modal modulation characteristics at 325-MHz and compare them in detail with B0943+10. The pulsar never seems to null, and we find a 43-rotation-period feature in the stars Q mode that modulates the interpulse as well as the conal features in the main pulse. We conclude that B1822-09 must have a nearly orthogonal geometry and that its carousel circulation time is long compared to the modal sub-sequences available in our observations, and the mainpulse/interpulse separation is almost exactly 180 degrees. We conclude the precursors for both stars are incompatible with core-cone emission. We assess the interesting suggestion by Dyks et al. that downward-going radiation produces B1822-09s precursor emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا