ﻻ يوجد ملخص باللغة العربية
Recently, Lattelais et al. (2009) have interpreted aggregated observations of molecular isomers to suggest that there exists a minimum energy principle, such that molecular formation will favor more stable molecular isomers for thermodynamic reasons. To test the predictive power of this principle, we have fully characterized the spectra of the three isomers of C$_{3}$H$_{2}$O toward the well known molecular region Sgr B2(N). Evidence for the detection of the isomers cyclopropenone (c-C$_{3}$H$_{2}$O) and propynal (HCCCHO) is presented, along with evidence for the non-detection of the lowest zero-point energy isomer, propadienone (CH$_2$CCO). We interpret these observations as evidence that chemical formation pathways, which may be under kinetic control, have a more pronounced effect on final isomer abundances than thermodynamic effects such as the minimum energy principle.
Complex organic molecules (COMs) have been detected in a variety of interstellar sources. The abundances of these COMs in warming sources can be explained by syntheses linked to increasing temperatures and densities, allowing quasi-thermal chemical r
Understanding the degree of chemical complexity that can be reached in star-forming regions, together with the identification of precursors of the building blocks of life in the interstellar medium, is one of the goals of astrochemistry. Unbiased spe
We use integral field spectroscopic (IFS) observations from Gemini North Multi-Object Spectrograph (GMOS-N) of a group of four H II regions and the surrounding gas in the central region of the blue compact dwarf (BCD) galaxy NGC 4670. At spatial scal
Fragmentation branching ratios of electronically excited molecular species are of first importance for the modeling of gas phase interstellar chemistry. Despite experimental and theoretical efforts that have been done during the last two decades ther
The compositions of nascent planets depend on the compositions of their birth disks. In particular, the elemental compositions of Gas Giant gaseous envelopes depend on the elemental composition of the disk gas from which the envelope is accreted. Pre