ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Class of Nascent Eclipsing Binaries with Extreme Mass Ratios

169   0   0.0 ( 0 )
 نشر من قبل Maxwell Moe
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Early B-type main-sequence (MS) stars (M$_1$ = 5-16 M$_{odot}$) with closely orbiting low-mass stellar companions (q = M$_2$/M$_1$ < 0.25) can evolve to produce Type Ia supernovae, low-mass X-ray binaries, and millisecond pulsars. However, the formation mechanism and intrinsic frequency of such close extreme mass-ratio binaries have been debated, especially considering none have hitherto been detected. Utilizing observations of the Large Magellanic Cloud galaxy conducted by the Optical Gravitational Lensing Experiment, we have discovered a new class of eclipsing binaries in which a luminous B-type MS star irradiates a closely orbiting low-mass pre-MS companion that has not yet fully formed. The primordial pre-MS companions have large radii and discernibly reflect much of the light they intercept from the B-type MS primaries ($Delta$I$_{rm refl}$ = 0.02-0.14 mag). For the 18 definitive MS + pre-MS eclipsing binaries in our sample with good model fits to the observed light curves, we measure short orbital periods P = 3.0-8.5 days, young ages $tau$ = 0.6-8 Myr, and small secondary masses M$_2$ = 0.8-2.4 M$_{odot}$ (q = 0.07-0.36). The majority of these nascent eclipsing binaries are still associated with stellar nurseries, e.g. the system with the deepest eclipse $Delta$I$_1$ = 2.8 mag and youngest age $tau$ = 0.6$pm$0.4 Myr is embedded in the bright H II region 30 Doradus. After correcting for selection effects, we find that (2.0$pm$0.6)% of B-type MS stars have companions with short orbital periods P = 3.0-8.5 days and extreme mass ratios q = 0.06-0.25. This is $approx$10 times greater than that observed for solar-type MS primaries. We discuss how these new eclipsing binaries provide invaluable insights, diagnostics, and challenges for the formation and evolution of stars, binaries, and H II regions.



قيم البحث

اقرأ أيضاً

Eclipsing binary stars are rare and extremely valuable astrophysical laboratories that make possible precise determination of fundamental stellar parameters. Investigation of early-type chemically peculiar stars in eclipsing binaries provides importa nt information for understanding the origin and evolutionary context of their anomalous surface chemistry. In this study we discuss observations of eclipse variability in six mercury-manganese (HgMn) stars monitored by the TESS satellite. These discoveries double the number of known eclipsing HgMn stars and yield several interesting objects requiring further study. In particular, we confirm eclipses in HD 72208, thereby establishing this object as the longest-period eclipsing HgMn star. Among five other eclipsing binaries, reported here for the first time, HD 36892 and HD 53004 stand out as eccentric systems showing heartbeat variability in addition to eclipses. The latter object has the highest eccentricity among eclipsing HgMn stars and also exhibits tidally induced oscillations. Finally, we find evidence that HD 55776 may be orbited by a white dwarf companion.
108 - Kai Li , Qi-Qi Xia , Chun-Hwey Kim 2021
The cut-off mass ratio is under debate for contact binaries. In this paper, we present the investigation of two contact binaries with mass ratios close to the low mass ratio limit. It is found that the mass ratios of VSX J082700.8+462850 (hereafter J 082700) and 1SWASP J132829.37+555246.1 (hereafter J132829) are both less than 0.1 ($qsim0.055$ for J082700, and $qsim0.089$ for J132829). J082700 is a shallow contact binary with a contact degree of $sim$19%, and J132829 is a deep contact system with a fillout factor of $sim$70%. The $O-C$ diagram analysis indicated that both the two systems manifest long-term period decrease. In addition, J082700 exhibits a cyclic modulation which is more likely resulted from Applegate mechanism. In order to explore the properties of extremely low mass ratio contact binaries (ELMRCBs), we carried out a statistical analysis on contact binaries with mass ratios of $qlesssim0.1$ and discovered that the values of $J_{spin}/J_{orb}$ of three systems are greater than 1/3. Two possible explanations can interpret this phenomenon. One is that some physical processes, unknown to date, are not considered when Hut presented the dynamically instability criterion. The other is that the dimensionless gyration radius ($k$) should be smaller than the value we used ($k^2=0.06$). We also found that the formation of ELMRCBs possibly has two channels. The study of evolutionary states of ELMRCBs reveals that their evolutionary states are similar with those of normal W UMa contact binaries.
We present high precision, model independent, mass and radius measurements for 16 white dwarfs in detached eclipsing binaries and combine these with previously published data to test the theoretical white dwarf mass-radius relationship. We reach a me an precision of 2.4 per cent in mass and 2.7 per cent in radius, with our best measurements reaching a precision of 0.3 per cent in mass and 0.5 per cent in radius. We find excellent agreement between the measured and predicted radii across a wide range of masses and temperatures. We also find the radii of all white dwarfs with masses less than 0.48M$_odot$ to be fully consistent with helium core models, but they are on average 9 per cent larger than those of carbon-oxygen core models. In contrast, white dwarfs with masses larger than 0.52M$_odot$ all have radii consistent with carbon-oxygen core models. Moreover, we find that all but one of the white dwarfs in our sample have radii consistent with possessing thick surface hydrogen envelopes ($10^{-5} ge M_mathrm{H}/M_mathrm{WD} ge 10^{-4}$), implying that the surface hydrogen layers of these white dwarfs are not obviously affected by common envelope evolution.
We present the discovery of the second binary with a Roche lobe-filling hot subdwarf transferring mass to a white dwarf (WD) companion. This 56 minute binary was discovered using data from the Zwicky Transient Facility. Spectroscopic observations rev eal an He-sdOB star with an effective temperature of $T_{rm eff}=33,700pm1000$ K and a surface gravity of $log(g)=5.54pm0.11$. The GTC+HiPERCAM light curve is dominated by the ellipsoidal deformation of the He-sdOB star and shows an eclipse of the He-sdOB by an accretion disk as well as a weak eclipse of the WD. We infer a He-sdOB mass of $M_{rm sdOB}=0.41pm0.04$ M$_odot$ and a WD mass of $M_{rm WD}=0.68pm0.05$ M$_odot$. The weak eclipses imply a WD black-body temperature of $63,000pm10,000$ K and a radius $R_{rm WD}=0.0148pm0.0020$ M$_odot$ as expected for a WD of such high temperature. The He-sdOB star is likely undergoing hydrogen shell burning and will continue transferring mass for $approx1$ Myrs at a rate of $10^{-9} M_odot {rm yr}^{-1}$ which is consistent with the high WD temperature. The hot subdwarf will then turn into a WD and the system will merge in $approx30$ Myrs. We suggest that Galactic reddening could bias discoveries towards preferentially finding Roche lobe-filling systems during the short-lived shell burning phase. Studies using reddening corrected samples should reveal a large population of helium core-burning hot subdwarfs with $T_{rm eff}approx25,000$ K in binaries of 60-90 minutes with WDs. Though not yet in contact, these binaries would eventually come into contact through gravitational wave emission and explode as a sub-luminous thermonuclear supernova or evolve into a massive single WD.
120 - D. R. Gies , R. A. Matson , Z. Guo 2015
Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclips ing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars among this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا