ﻻ يوجد ملخص باللغة العربية
We construct a sequence of Markov processes on the set of dominant weights of an affine Lie algebra $mathfrak{g}$ considering tensor product of irreducible highest weight modules of $mathfrak{g}$ and specializations of the characters involving the Weyl vector $rho$. We show that it converges towards a space-time Brownian motion with a drift, conditioned to remain in a Weyl chamber associated to the root system of $mathfrak{g}$.
We construct a sequence of Markov processes on the set of dominant weights of the Affine Lie algebra $hat{mathfrak{sl}_2}(C)$ which involves tensor product of irreducible highest weight modules of $hat{mathfrak{sl}_2}(C)$ and show that it converges t
This is a summary (in French) of my work about brownian motion and Kac-Moody algebras during the last seven years, presented towards the Habilitation degree.
Pitmans theorem states that if {Bt, t $ge$ 0} is a one-dimensional Brownian motion, then {Bt -- 2 inf s$le$t Bs, t $ge$ 0} is a three dimensional Bessel process, i.e. a Brownian motion conditioned in Doob sense to remain forever positive. In this pap
We construct a family of homomorphisms between Weyl modules for affine Lie algebras in characteristic p, which supports our conjecture on the strong linkage principle in this context. We also exhibit a large class of reducible Weyl modules beyond level one, for p not necessarily small.
In this paper, we study nullity-2 toroidal extended affine Lie algebras in the context of vertex algebras and their $phi$-coordinated modules. Among the main results, we introduce a variant of toroidal extended affine Lie algebras, associate vert