ترغب بنشر مسار تعليمي؟ اضغط هنا

Random Almost-Popular Matchings

125   0   0.0 ( 0 )
 نشر من قبل Suthee Ruangwises
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For a set $A$ of $n$ people and a set $B$ of $m$ items, with each person having a preference list that ranks all items from most wanted to least wanted, we consider the problem of matching every person with a unique item. A matching $M$ is called $epsilon$-popular if for any other matching $M$, the number of people who prefer $M$ to $M$ is at most $epsilon n$ plus the number of those who prefer $M$ to $M$. In 2006, Mahdian showed that when randomly generating peoples preference lists, if $m/n > 1.42$, then a 0-popular matching exists with $1-o(1)$ probability; and if $m/n < 1.42$, then a 0-popular matching exists with $o(1)$ probability. The ratio 1.42 can be viewed as a transition point, at which the probability rises from asymptotically zero to asymptotically one, for the case $epsilon=0$. In this paper, we introduce an upper bound and a lower bound of the transition point in more general cases. In particular, we show that when randomly generating each persons preference list, if $alpha(1-e^{-1/alpha}) > 1-epsilon$, then an $epsilon$-popular matching exists with $1-o(1)$ probability (upper bound); and if $alpha(1-e^{-(1+e^{1/alpha})/alpha}) < 1-2epsilon$, then an $epsilon$-popular matching exists with $o(1)$ probability (lower bound).



قيم البحث

اقرأ أيضاً

For a set A of n applicants and a set I of m items, we consider a problem of computing a matching of applicants to items, i.e., a function M mapping A to I; here we assume that each applicant $x in A$ provides a preference list on items in I. We say that an applicant $x in A$ prefers an item p than an item q if p is located at a higher position than q in its preference list, and we say that x prefers a matching M over a matching M if x prefers M(x) over M(x). For a given matching problem A, I, and preference lists, we say that M is more popular than M if the number of applicants preferring M over M is larger than that of applicants preferring M over M, and M is called a popular matching if there is no other matching that is more popular than M. Here we consider the situation that A is partitioned into $A_{1},A_{2},...,A_{k}$, and that each $A_{i}$ is assigned a weight $w_{i}>0$ such that w_{1}>w_{2}>...>w_{k}>0$. For such a matching problem, we say that M is more popular than M if the total weight of applicants preferring M over M is larger than that of applicants preferring M over M, and we call M an k-weighted popular matching if there is no other matching that is more popular than M. In this paper, we analyze the 2-weighted matching problem, and we show that (lower bound) if $m/n^{4/3}=o(1)$, then a random instance of the 2-weighted matching problem with $w_{1} geq 2w_{2}$ has a 2-weighted popular matching with probability o(1); and (upper bound) if $n^{4/3}/m = o(1)$, then a random instance of the 2-weighted matching problem with $w_{1} geq 2w_{2}$ has a 2-weighted popular matching with probability 1-o(1).
We show that the ratio of matched individuals to blocking pairs grows linearly with the number of propose--accept rounds executed by the Gale--Shapley algorithm for the stable marriage problem. Consequently, the participants can arrive at an almost s table matching even without full information about the problem instance; for each participant, knowing only its local neighbourhood is enough. In distributed-systems parlance, this means that if each person has only a constant number of acceptable partners, an almost stable matching emerges after a constant number of synchronous communication rounds. This holds even if ties are present in the preference lists. We apply our results to give a distributed $(2+epsilon)$-approximation algorithm for maximum-weight matching in bicoloured graphs and a centralised randomised constant-time approximation scheme for estimating the size of a stable matching.
The min-cost matching problem suffers from being very sensitive to small changes of the input. Even in a simple setting, e.g., when the costs come from the metric on the line, adding two nodes to the input might change the optimal solution completely . On the other hand, one expects that small changes in the input should incur only small changes on the constructed solutions, measured as the number of modified edges. We introduce a two-stage model where we study the trade-off between quality and robustness of solutions. In the first stage we are given a set of nodes in a metric space and we must compute a perfect matching. In the second stage $2k$ new nodes appear and we must adapt the solution to a perfect matching for the new instance. We say that an algorithm is $(alpha,beta)$-robust if the solutions constructed in both stages are $alpha$-approximate with respect to min-cost perfect matchings, and if the number of edges deleted from the first stage matching is at most $beta k$. Hence, $alpha$ measures the quality of the algorithm and $beta$ its robustness. In this setting we aim to balance both measures by deriving algorithms for constant $alpha$ and $beta$. We show that there exists an algorithm that is $(3,1)$-robust for any metric if one knows the number $2k$ of arriving nodes in advance. For the case that $k$ is unknown the situation is significantly more involved. We study this setting under the metric on the line and devise a $(10,2)$-robust algorithm that constructs a solution with a recursive structure that carefully balances cost and redundancy.
A matching $M$ in a graph $G$ is said to be uniquely restricted if there is no other matching in $G$ that matches the same set of vertices as $M$. We describe a polynomial-time algorithm to compute a maximum cardinality uniquely restricted matching i n an interval graph, thereby answering a question of Golumbic et al. (Uniquely restricted matchings, M. C. Golumbic, T. Hirst and M. Lewenstein, Algorithmica, 31:139--154, 2001). Our algorithm actually solves the more general problem of computing a maximum cardinality strong independent set in an interval nest digraph, which may be of independent interest. Further, we give linear-time algorithms for computing maximum cardinality uniquely restricted matchings in proper interval graphs and bipartite permutation graphs.
We study the computational complexity of several problems connected with finding a maximal distance-$k$ matching of minimum cardinality or minimum weight in a given graph. We introduce the class of $k$-equimatchable graphs which is an edge analogue o f $k$-equipackable graphs. We prove that the recognition of $k$-equimatchable graphs is co-NP-complete for any fixed $k ge 2$. We provide a simple characterization for the class of strongly chordal graphs with equal $k$-packing and $k$-domination numbers. We also prove that for any fixed integer $ell ge 1$ the problem of finding a minimum weight maximal distance-$2ell$ matching and the problem of finding a minimum weight $(2 ell - 1)$-independent dominating set cannot be approximated in polynomial time in chordal graphs within a factor of $delta ln |V(G)|$ unless $mathrm{P} = mathrm{NP}$, where $delta$ is a fixed constant (thereby improving the NP-hardness result of Chang for the independent domination case). Finally, we show the NP-hardness of the minimum maximal induced matching and independent dominating set problems in large-girth planar graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا