ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain driven monoclinic distortion of ultrathin CoO films in CoO/Pt(001) and exchange-coupled CoO/PtFe/Pt(001) systems

124   0   0.0 ( 0 )
 نشر من قبل Aline Ramos Y
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The structure and strain of ultrathin CoO films grown on a Pt(001) substrate and on a ferromagnetic PtFe pseudomorphic layer on Pt(001) have been determined with insitu and real time surface x-ray diffraction. The films grow epitaxially on both surfaces with an in-plane hexagonal pattern that yields a pseudo-cubic CoO(111) surface. A refined x-ray diffraction analysis reveals a slight monoclinic distortion at RT induced by the anisotropic stress at the interface. The tetragonal contribution to the distortion results in a ratio c/a > 1, opposite to that found in the low temperature bulk CoO phase. This distortion leads to a stable Co2+ spin configuration within the plane of the film.



قيم البحث

اقرأ أيضاً

407 - Jia Xu , Haoran Chen , Chao Zhou 2020
Antiferromagnetic (AFM) domains in ultrathin CoO(001) films are imaged by a wide-field optical microscopy using magneto-optical birefringence effect. The magnetic origin of observed optical contrast is confirmed by the spin orientation manipulation t hrough exchange coupling in Fe/CoO(001) bilayer. The finite size effect of ordering temperature for ultrathin single crystal CoO film is revealed by the thickness and temperature dependent measurement of birefringence contrast. The magneto-optical birefringence effect is found to strongly depend on the photon energy of incident light, and a surprising large polarization rotation angle up to 168.5 mdeg is obtained from a 4.6 nm CoO film with a blue light source, making it possible to further investigate the evolution of AFM domains in AFM ultrathin film under external field.
Using microemulsion methods, CoO-Pt core-shell nanoparticles (NPs), with diameters of nominally 4 nm, were synthesized and characterized by high-resolution transmission electron microscopy (HRTEM) and a suite of x-ray spectroscopies, including diffra ction (XRD), absorption (XAS), absorption near-edge structure (XANES), and extended absorption fine structure (EXAFS), which confirmed the existence of CoO cores and pure Pt surface layers. Using a commercial magnetometer, the ac and dc magnetic properties were investigated over a range of temperature (2 K $leq$ T $leq$ 300 K), magnetic field ($leq$ 50 kOe), and frequency ($leq$ 1 kHz). The data indicate the presence of two different magnetic regimes whose onsets are identified by two maxima in the magnetic signals, with a narrow maximum centered at 6 K and a large one centered at 37 K. The magnetic responses in these two regimes exhibit different frequency dependences, where the maximum at high temperature follows a Vogel-Fulcher law, indicating a superparamagnetic (SPM) blocking of interacting nanoparticle moments and the maximum at low temperature possesses a power law response characteristic of a collective freezing of the nanoparticle moments in a superspin glass (SSG) state. This co-existence of blocking and freezing behaviors is consistent with the nanoparticles possessing an antiferromagnetically ordered core, with an uncompensated magnetic moment, and a magnetically disordered interlayer between CoO core and Pt shell.
The possibility that the apparent room temperature ferromagnetism, often measured in Co-doped ZnO, is due to uncompensated spins at the surface of wurtzite CoO nanoclusters is investigated by means of a combination of density functional theory and Mo nte Carlo simulations. We find that the critical temperature extracted from the specific heat systematically drops as the cluster size is reduced, regardless of the particular cluster shape. Furthermore the presence of defects, in the form of missing magnetic sites, further reduces $T_mathrm{C}$. This suggests that even a spinodal decomposed phase is unlikely to sustain room temperature ferromagnetism in ZnO:Co.
We report the magnetotransport properties of self-assembled Co@CoO nanoparticle arrays at temperatures below 100 K. Resistance shows thermally activated behavior that can be fitted by the general expression of R exp{(T/T0)^v}. Efros-Shklovskii variab le range hopping (v=1/2) and simple activation (hard gap, v=1) dominate the high and low temperature region, respectively, with a strongly temperature-dependent transition regime in between. A giant positive magnetoresistance of >1,400% is observed at 10K, which decreases with increasing temperature. The positive MR and most of its features can be explained by the Zeeman splitting of the localized states that suppresses the spin dependent hopping paths in the presence of on-site Coulomb repulsion.
One of the most important challenges in antiferromagnetic spintronics is the read-out of the Neel vector state. High current densities up to 10$^8$ Acm$^{-2}$ used in the electrical switching experiments cause notorious difficulty in distinguishing b etween magnetic and thermal origins of the electrical signals. To overcome this problem, we present a temperature dependence study of the transverse resistance changes in the switching experiment with CoO|Pt devices. We demonstrate the possibility to extract a pattern of spin Hall magnetoresistance for current pulses density of $5 times 10^7$ Acm$^{-2}$ that is present only below the Neel temperature and does not follow a trend expected for thermal effects. This is the compelling evidence for the magnetic origin of the signal, which is observed using purely electrical techniques. We confirm these findings by complementary experiments in an external magnetic field. Such an approach can allow determining the optimal conditions for switching antiferromagnets and be very valuable when no imaging techniques can be applied to verify the origin of the electrical signal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا