ترغب بنشر مسار تعليمي؟ اضغط هنا

Thickness of Stellar Disks in Early-type Galaxies

108   0   0.0 ( 0 )
 نشر من قبل Olga Silchenko
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest and verify a new photometric method enabling derivation of relative thickness of a galactic disk from two-dimensional surface-brightness distribution of the galaxy in the plane of the sky. The method is applied to images of 45 early-type (S0-Sb) galaxies with known radial exponential or double-exponential (with a flatter outer profile) surface-brightness distributions. The data in the r-band have been retrieved from the SDSS archive. Statistics of the estimated relative thicknesses of the stellar disks of early-type disk galaxies shows the following features. The disks of lenticular and early-type spiral galaxies have similar thicknesses. The presence of a bar results in only a slight marginal increase of the thickness. However, we have found a substantial difference between the thicknesses of the disks with a single-scaled exponential brightness profile and the disks that represent the inner segments of the Type III (antitruncated) profiles. The disks are significantly thicker in the former subsample than in the latter one. This may provide evidence for a surface-brightness distribution of a single-scaled exponential disk to be formed due to viscosity effects acting over the entire period of star formation in the disk.



قيم البحث

اقرأ أيضاً

The late assembly of massive galaxies is thought to be dominated by stellar accretion in their outskirts (beyond 2 effective radii Re) due to dry, minor galaxy mergers. We use observations of 1010 passive early-type galaxies (ETGs) within z<0.15 from SDSS IV MaNGA to search for evidence of this accretion. The outputs from the stellar population fitting codes FIREFLY, pPXF, and Prospector are compared to control for systematic errors in stellar metallicity (Z) estimation. We find that the average radial logZ/Zsun profiles of ETGs in various stellar mass (M) bins are not linear. As a result, these profiles are poorly characterized by a single gradient value, explaining why weak trends reported in previous work can be difficult to interpret. Instead, we examine the full radial extent of stellar metallicity profiles and find them to flatten in the outskirts of M>10^{11}Msun ETGs. This is a signature of stellar accretion. Based on a toy model for stellar metallicity profiles, we infer the ex-situ stellar mass fraction in ETGs as a function of M and galactocentric radius. We find that ex-situ stars at 2Re make up 20% of the projected stellar mass of M<10^{10.5}Msun ETGs, rising up to 80% for M>10^{11.5}Msun ETGs.
Using the exquisite depth of the Hubble Ultra Deep Field (HUDF12 programme) dataset, we explore the ongoing assembly of the outermost regions of the most massive galaxies ($rm M_{rm stellar}geq$ 5$times$10$^{10}$ M$_{odot}$) at $z leq$ 1. The outskir ts of massive objects, particularly Early-Types Galaxies (ETGs), are expected to suffer a dramatic transformation across cosmic time due to continuous accretion of small galaxies. HUDF imaging allows us to study this process at intermediate redshifts in 6 massive galaxies, exploring the individual surface brightness profiles out to $sim$25 effective radii. We find that 5-20% of the total stellar mass for the galaxies in our sample is contained within 10 $< R <$ 50 kpc. These values are in close agreement with numerical simulations, and higher than those reported for local late-type galaxies ($lesssim$5%). The fraction of stellar mass stored in the outer envelopes/haloes of Massive Early-Type Galaxies increases with decreasing redshift, being 28.7% at $< z > =$ 0.1, 15.1% at $< z > =$ 0.65 and 3.5% at $< z > =$ 2. The fraction of mass in diffuse features linked with ongoing minor merger events is $>$ 1-2%, very similar to predictions based on observed close pair counts. Therefore, the results for our small albeit meaningful sample suggest that the size and mass growth of the most massive galaxies have been solely driven by minor and major merging from $z =$ 1 to today.
We present a spectroscopic analysis based on measurements of two mainly age-dependent spectrophotometric indices in the 4000A rest frame region, i.e. H+K(CaII) and Delta4000, for a sample of 15 early-type galaxies (ETGs) at 0.7 < z_{spec} < 1.1, morp hologically selected in the GOODS-South field. Ages derived from the two different indices by means of the comparison with stellar population synthesis models, are not consistent with each other for at least nine galaxies (60 per cent of the sample), while for the remaining six galaxies, the ages derived from their global spectral energy distribution (SED) fitting are not consistent with those derived from the two indices. We then hypothesized that the stellar content of many galaxies is made of two stellar components with different ages. The double-component analysis, performed by taking into account both the index values and the observed SED, fully explains the observational data and improves the results of the standard one-component SED fitting in 9 out of the 15 objects, i.e. those for which the two indices point towards two different ages. In all of them, the bulk of the mass belongs to rather evolved stars, while a small mass fraction is many Gyr younger. In some cases, thanks to the sensitivity of the H+K(CaII) index, we find that the minor younger component reveals signs of recent star formation. The distribution of the ages of the younger stellar components appears uniformly in time and this suggests that small amounts of star formation could be common during the evolution of high-z ETGs. We argue the possibility that these new star formation episodes could be frequently triggered by internal causes due to the presence of small gas reservoir.
Recent work suggests blue ellipticals form in mergers and migrate quickly from the blue cloud of star-forming galaxies to the red sequence of passively evolving galaxies, perhaps as a result of black hole feedback. Such rapid reddening of stellar pop ulations implies that large gas reservoirs in the pre-merger star-forming pair must be depleted on short time scales. Here we present pilot observations of atomic hydrogen gas in four blue early-type galaxies that reveal increasing spatial offsets between the gas reservoirs and the stellar components of the galaxies, with advancing post-starburst age. Emission line spectra show associated nuclear activity in two of the merged galaxies, and in one case radio lobes aligned with the displaced gas reservoir. These early results suggest that a kinetic process (possibly feedback from black hole activity) is driving the quick truncation of star formation in these systems, rather than a simple exhaustion of gas supply.
126 - S.C. Trager 2006
It is currently impossible to determine the abundances of stellar populations star-by-star in dense stellar systems more distant than a few megaparsecs. Therefore, methods to analyse the composite light of stellar systems are required. I review recen t progress in determining the abundances and abundance ratios of early-type galaxies. I begin with `direct abundance measurements: colour--magnitude diagrams of and planetary nebula in nearby early-type galaxies. I then give an overview of `indirect abundance measurements: inferences from stellar population models, with an emphasis on cross-checks with `direct methods. I explore the variations of early-type galaxy abundances as a function of mass, age, and environment in the local Universe. I conclude with a list of continuing difficulties in the modelling that complicate the interpretation of integrated spectra and I look ahead to new methods and new observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا