ترغب بنشر مسار تعليمي؟ اضغط هنا

The Void Galaxy Survey: Galaxy Evolution and Gas Accretion in Voids

189   0   0.0 ( 0 )
 نشر من قبل Kathryn Stanonik Kreckel
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Voids represent a unique environment for the study of galaxy evolution, as the lower density environment is expected to result in shorter merger histories and slower evolution of galaxies. This provides an ideal opportunity to test theories of galaxy formation and evolution. Imaging of the neutral hydrogen, central in both driving and regulating star formation, directly traces the gas reservoir and can reveal interactions and signs of cold gas accretion. For a new Void Galaxy Survey (VGS), we have carefully selected a sample of 59 galaxies that reside in the deepest underdensities of geometrically identified voids within the SDSS at distances of ~100 Mpc, and pursued deep UV, optical, Halpha, IR, and HI imaging to study in detail the morphology and kinematics of both the stellar and gaseous components. This sample allows us to not only examine the global statistical properties of void galaxies, but also to explore the details of the dynamical properties. We present an overview of the VGS, and highlight key results on the HI content and individually interesting systems. In general, we find that the void galaxies are gas rich, low luminosity, blue disk galaxies, with optical and HI properties that are not unusual for their luminosity and morphology. We see evidence of both ongoing assembly, through the gas dynamics between interacting systems, and significant gas accretion, seen in extended gas disks and kinematic misalignments. The VGS establishes a local reference sample to be used in future HI surveys (CHILES, DINGO, LADUMA) that will directly observe the HI evolution of void galaxies over cosmic time.



قيم البحث

اقرأ أيضاً

We analyze photometry from deep B-band images of 59 void galaxies in the Void Galaxy Survey (VGS), together with their near-infrared 3.6$mu$m and 4.5$mu$m Spitzer photometry. The VGS galaxies constitute a sample of void galaxies that were selected by a geometric-topological procedure from the SDSS DR7 data release, and which populate the deep interior of voids. Our void galaxies span a range of absolute B-magnitude from $rm{M_B=-15.5}$ to $rm{M_B=-20}$, while at the 3.6$mu$m band their magnitudes range from $rm{M_{3.6}=-18}$ to $rm{M_{3.6}=-24}$. Their B-[3.6] colour and structural parameters indicate these are star forming galaxies. A good reflection of the old stellar population, the near-infrared band photometry also provide a robust estimate of the stellar mass, which for the VGS galaxies we confirm to be smaller than $3 times 10^{10}$ M$_odot$. In terms of the structural parameters and morphology, our findings align with other studies in that our VGS galaxy sample consists mostly of small late-type galaxies. Most of them are similar to Sd-Sm galaxies, although a few are irregularly shaped galaxies. The sample even includes two early-type galaxies, one of which is an AGN. Their S{e}rsic indices are nearly all smaller than $n=2$ in both bands and they also have small half-light radii. In all, we conclude that the principal impact of the void environment on the galaxies populating them mostly concerns their low stellar mass and small size.
The Void Galaxy Survey (VGS) is a multi-wavelength program to study $sim$60 void galaxies. Each has been selected from the deepest interior regions of identified voids in the SDSS redshift survey on the basis of a unique geometric technique, with no a prior selection of intrinsic properties of the void galaxies. The project intends to study in detail the gas content, star formation history and stellar content, as well as kinematics and dynamics of void galaxies and their companions in a broad sample of void environments. It involves the HI imaging of the gas distribution in each of the VGS galaxies. Amongst its most tantalizing findings is the possible evidence for cold gas accretion in some of the most interesting objects, amongst which are a polar ring galaxy and a filamentary configuration of void galaxies. Here we shortly describe the scope of the VGS and the results of the full analysis of the pilot sample of 15 void galaxies.
473 - X. Dai 2009
We present galaxy luminosity functions at 3.6, 4.5, 5.8, and 8.0 micron measured by combining photometry from the IRAC Shallow Survey with redshifts from the AGN and Galaxy Evolution Survey of the NOAO Deep Wide-Field Survey Bootes field. The well-de fined IRAC samples contain 3800-5800 galaxies for the 3.6-8.0 micron bands with spectroscopic redshifts and z < 0.6. We obtained relatively complete luminosity functions in the local redshift bin of z < 0.2 for all four IRAC channels that are well fit by Schechter functions. We found significant evolution in the luminosity functions for all four IRAC channels that can be fit as an evolution in M* with redshift, Delta M* = Qz. While we measured Q=1.2pm0.4 and 1.1pm0.4 in the 3.6 and 4.5 micron bands consistent with the predictions from a passively evolving population, we obtained Q=1.8pm1.1 in the 8.0 micron band consistent with other evolving star formation rate estimates. We compared our LFs with the predictions of semi-analytical galaxy formation and found the best agreement at 3.6 and 4.5 micron, rough agreement at 8.0 micron, and a large mismatch at 5.8 micron. These models also predicted a comparable Q value to our luminosity functions at 8.0 micron, but predicted smaller values at 3.6 and 4.5 micron. We also measured the luminosity functions separately for early and late-type galaxies. While the luminosity functions of late-type galaxies resemble those for the total population, the luminosity functions of early-type galaxies in the 3.6 and 4.5 micron bands indicate deviations from the passive evolution model, especially from the measured flat luminosity density evolution. Combining our estimates with other measurements in the literature, we found (53pm18)% of the present stellar mass of early-type galaxies has been assembled at z=0.7.
We study the clustering of galaxies as a function of spectral type and redshift in the range $0.35 < z < 1.1$ using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The data cover 2.381 deg$^2$ in 7 f ields, after applying a detailed angular selection mask, with accurate photometric redshifts [$sigma_z < 0.014(1+z)$] down to $I_{AB} < 24$. From this catalog we draw five fixed number density, redshift-limited bins. We estimate the clustering evolution for two different spectral populations selected using the ALHAMBRA-based photometric templates: quiescent and star-forming galaxies. For each sample, we measure the real-space clustering using the projected correlation function. Our calculations are performed over the range $[0.03,10.0] h^{-1}$ Mpc, allowing us to find a steeper trend for $r_p lesssim 0.2 h^{-1}$ Mpc, which is especially clear for star-forming galaxies. Our analysis also shows a clear early differentiation in the clustering properties of both populations: star-forming galaxies show weaker clustering with evolution in the correlation length over the analysed redshift range, while quiescent galaxies show stronger clustering already at high redshifts, and no appreciable evolution. We also perform the bias calculation where similar segregation is found, but now it is among the quiescent galaxies where a growing evolution with redshift is clearer. These findings clearly corroborate the well known colour-density relation, confirming that quiescent galaxies are mainly located in dark matter halos that are more massive than those typically populated by star-forming galaxies.
370 - TianChi Zhang , Qi Guo , Yan Qu 2021
We use a semi-analytic galaxy formation model to study the co-evolution of supermassive black holes (SMBHs) with their host galaxies. Although the coalescence of SMBHs is not important, the quasar-mode accretion induced by mergers plays a dominant ro le in the growth of SMBHs. Mergers play a more important role in the growth of SMBH host galaxies than in the SMBH growth. It is the combined contribution from quasar mode accretion and mergers to the SMBH growth and the combined contribution from starburst and mergers to their host galaxy growth that determine the observed scaling relation between the SMBH masses and their host galaxy masses. We also find that mergers are more important in the growth of SMBH host galaxies compared to normal galaxies which share the same stellar mass range as the SMBH host galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا