Bifurcation and control of chaos in Induction motor drives


الملخص بالإنكليزية

The induction motor controlled by Indirect Field Oriented Control (IFOC) is known to have high performance and better stability. This paper reports the dynamical behavior of an indirect field oriented control (IFOC) induction motor drive in the light of bifurcation theory. The speed of high performance induction motor drive is controlled by IFOC method. The knowledge of qualitative change of the behavior of the motor such as equilibrium points, limit cycles and chaos with the change of motor parameters and load torque are essential for proper control of the motor. This paper provides a numerical approach to understand better the dynamical behavior of an indirect field oriented control of a current-fed induction motor. The focus is on bifurcation analysis of the IFOC motor, with a particular emphasis on the change that affects the dynamics and stability under small variations of Proportional Integral controller (PI) parameters, load torque and k, the ratio of the rotor time constant and its estimate etc. Bifurcation diagrams are computed. This paper also attempts to discuss various types of the transition to chaos in the induction motor. The results of the obtained bifurcation simulations give useful guidelines for adjusting both motor model and PI controller parameters. It is also important to ensure desired operation of the motor when the motor shows chaotic behavior. Infinite numbers of unstable periodic orbits are embedded in a chaotic attractor. Any unstable periodic orbit can be stabilized by proper control algorithm. The delayed feedback control method to control chaos has been implemented in this system.

تحميل البحث