ترغب بنشر مسار تعليمي؟ اضغط هنا

Chaos in high-dimensional dynamical systems

141   0   0.0 ( 0 )
 نشر من قبل Iaroslav Ispolatov
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For general dissipative dynamical systems we study what fraction of solutions exhibit chaotic behavior depending on the dimensionality $d$ of the phase space. We find that a system of $d$ globally coupled ODEs with quadratic and cubic non-linearities with random coefficients and initial conditions, the probability of a trajectory to be chaotic increases universally from $sim 10^{-5} - 10^{-4}$ for $d=3$ to essentially one for $dsim 50$. In the limit of large $d$, the invariant measure of the dynamical systems exhibits universal scaling that depends on the degree of non-linearity but does not depend on the choice of coefficients, and the largest Lyapunov exponent converges to a universal scaling limit. Using statistical arguments, we provide analytical explanations for the observed scaling and for the probability of chaos.



قيم البحث

اقرأ أيضاً

185 - Carl T. West 2008
We study the Loschmidt echo F(t) for a class of dynamical systems showing critical chaos. Using a kicked rotor with singular potential as a prototype model, we found that the classical echo shows a gap (initial drop) 1-F_g where F_g scales as F_g(alp ha, epsilon, eta)= f_cl(chi_cl equiveta^{3-alpha}/epsilon); alpha is the order of singularity of the potential, eta is the spread of the initial phase space density and epsilon is the perturbation strength. Instead, the quantum echo gap is insensitive to alpha, described by a scaling law F_g = f_q(chi_q = eta^2/epsilon) which can be captured by a Random Matrix Theory modeling of critical systems. We trace this quantum-classical discrepancy to strong diffraction effects that dominate the dynamics.
130 - Ru-Hai Du , Shi-Xian Qu , 2018
We uncover a route from low-dimensional to high-dimensional chaos in nonsmooth dynamical systems as a bifurcation parameter is continuously varied. The striking feature is the existence of a finite parameter interval of periodic attractors in between the regimes of low- and high-dimensional chaos. That is, the emergence of high-dimensional chaos is preceded by the systems settling into a totally nonchaotic regime. This is characteristically distinct from the situation in smooth dynamical systems where high-dimensional chaos emerges directly and smoothly from low-dimensional chaos. We carry out an analysis to elucidate the underlying mechanism for the abrupt emergence and disappearance of the periodic attractors and provide strong numerical support for the typicality of the transition route in the pertinent two-dimensional parameter space. The finding has implications to applications where high-dimensional and robust chaos is desired.
61 - B. Biswal , C. Dasgupta 2002
A neural network model that exhibits stochastic population bursting is studied by simulation. First return maps of inter-burst intervals exhibit recurrent unstable periodic orbit (UPO)-like trajectories similar to those found in experiments on hippoc ampal slices. Applications of various control methods and surrogate analysis for UPO-detection also yield results similar to those of experiments. Our results question the interpretation of the experimental data as evidence for deterministic chaos and suggest caution in the use of UPO-based methods for detecting determinism in time-series data.
120 - D. J. Albers , J. C. Sprott 2004
This paper examines the most probable route to chaos in high-dimensional dynamical systems in a very general computational setting. The most probable route to chaos in high-dimensional, discrete-time maps is observed to be a sequence of Neimark-Sacke r bifurcations into chaos. A means for determining and understanding the degree to which the Landau-Hopf route to turbulence is non-generic in the space of $C^r$ mappings is outlined. The results comment on previous results of Newhouse, Ruelle, Takens, Broer, Chenciner, and Iooss.
237 - Xin-Chu Fu , Jinqiao Duan 1998
The authors present two results on infinite-dimensional linear dynamical systems with chaoticity. One is about the chaoticity of the backward shift map in the space of infinite sequences on a general Fr{e}chet space. The other is about the chaoticity of a translation map in the space of real continuous functions. The chaos is shown in the senses of both Li-Yorke and Wiggins. Treating dimensions as freedoms, the two results imply that in the case of an infinite number of freedoms, a system may exhibit complexity even when the action is linear. Finally, the authors discuss physical applications of infinite-dimensional linear chaotic dynamical systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا