ﻻ يوجد ملخص باللغة العربية
We study a marginally stable circular orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a timelike geodesic in any spherically symmetric and static spacetime. It turns out that the metric components are separable from the constants of motion along geodesics. We show also that a metric component $g_{rr}$ with a radial coordinate $r$ does not affect MSCOs. This suggests that, as a test of gravity, any ISCO measurement may be put into the same category as gravitational redshift experiments. MSCOs for exact solutions to the Einsteins equation are also mentioned.
In terms of Sturms theorem, we reexamine a marginal stable circular orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a timelike geodesic in any spherically symmetric and static spacetime. MSCOs for some of exact solutions to the Ein
We examine potential deformations of inner black hole and cosmological horizons in Reissner-Nordstrom de-Sitter spacetimes. While the rigidity of the outer black hole horizon is guaranteed by theorem, that theorem applies to neither the inner black h
The existence and stability of circular orbits (CO) in static and spherically symmetric (SSS) spacetime are important because of their practical and potential usefulness. In this paper, using the fixed point method, we first prove a necessary and suf
The measurement of the epicyclic frequencies is a widely used astrophysical technique to infer information on a given self-gravitating system and on the related gravity background. We derive their explicit expressions in static and spherically symmet
Perturbation theory of vacuum spherically-symmetric spacetimes is a crucial tool to understand the dynamics of black hole perturbations. Spherical symmetry allows for an expansion of the perturbations in scalar, vector, and tensor harmonics. The resu