ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffractive production of mesons

97   0   0.0 ( 0 )
 نشر من قبل Rainer Schicker M
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف R. Schicker




اسأل ChatGPT حول البحث

The interest in the study of diffractive meson production is discussed. The description of diffraction within Regge phenomenology is presented, and the QCD-based understanding of diffractive processes is given. Central production is reviewed, and the corresponding main results from the COMPASS experiment and from the experiments at the ISR, RHIC, TEVATRON and LHC collider are summarised.



قيم البحث

اقرأ أيضاً

104 - J.A. Crittenden 2001
We consider the contribution to our understanding of vacuum-exchange processes to be made by investigations at the proposed electron-proton collider THERA. Recent results have highlighted the value of such studies for testing quantum chromodynamical descriptions of both long-range and short-range strong interactions. Stringent quantitative constraints have been provided by exploiting the opportunity to correlate scaling behaviour with helicity selection in exclusive and semi-exclusive vector-meson production. After reviewing the progress achieved by the measurement programs presently being carried out by the H1 and ZEUS collaborations at HERA, we discuss the performance criteria imposed by such investigations on the THERA accelerator complex and on the detector design. We conclude that the study of vector-meson production will form an essential component of the THERA physics program beginning with the early turn-on stage of the machine and continuing throughout the achievement of its full high-luminosity potential.
Diffractive photoproduction of rho, phi and J/psi was studied in the BFKL approach to hard colour singlet exchange. Differential cross sections, the energy dependence and spin density matrix elements were calculated and compared to data from HERA. Th e overall description of data is reasonably good, except of the single flip amplitude which has the wrong sign. Importance of chiral odd components of the photon is stressed.
We analyse the origin of dramatic breakdown of diffractive factorisation, observed in single-diffractive (SD) dijet production in hadronic collisions. One of the sources is the application of the results of measurements of the diagonal diffractive DI S to the off-diagonal hadronic diffractive process. The suppression caused by a possibility of inelastic interaction with the spectator partons is calculated at the amplitude level, differently from the usual probabilistic description. It turns out, however, that interaction with the spectator partons not only suppresses the SD cross section, but also gives rise to the main mechanism of SD dijet production, which is another important source of factorization failure. Our parameter-free calculations of SD-to-inclusive cross section ratio, performed in the dipole representation, agrees with the corresponding CDF Tevatron (Run II) data at $sqrt{s}=1.96$ TeV in the relevant kinematic regions. The energy and hard scale dependences demonstrate a trend, opposite to the factorisation-based expectations, similarly to the effect observed earlier in diffractive Abelian radiation.
We calculate diffractive photo- and leptoproduction of $rho$-, $rho$- and $rho$-mesons. The incoming photon dissociates into a $qbar{q}$-dipole which scatters on the nucleon and transforms into a vector meson state. The scattering amplitude is calcul ated in non-perturbative QCD with the model of the stochastic vacuum. Assuming that the physical $rho$- and $rho$-mesons are mixed states of an active 2S-excitation and some residual hybrid state which cannot be produced diffractively in lowest order QCD, we obtain good agreement with the data, especially the markedly different spectrum in the $pi^+pi^-$-invariant mass for photoproduction and $e^+e^-$-annihilation.
101 - S. Fazio 2011
Exclusive diffractive production of real photons and vector mesons in ep collisions has been studied at HERA in a wide kinematic range. Here we present and discuss a Regge-type model of real photon production (Deeply Virtual Compton Scattering), as w ell as production of vector mesons (VMP) treated on the same footing by using an extension of a factorized Regge-pole model proposed earlier. The model has been fitted to the HERA data. Despite the very small number of the free parameters, the model gives a satisfactory description of the experimental data, both for the total cross section as a function of the photon virtuality Q2 or the energy W in the center of mass of the gammastar-p system, and the differential cross sections as a function of the squared four-momentum transfer t with fixed Q2 and W.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا