ﻻ يوجد ملخص باللغة العربية
Based on the classical Plucker correspondence, we present algebraic and geometric properties of discrete integrable line complexes in $CP^3$. Algebraically, these are encoded in a discrete integrable system which appears in various guises in the theory of continuous and discrete integrable systems. Geometrically, the existence of these integrable line complexes is shown to be guaranteed by Desargues classical theorem of projective geometry. A remarkable characterisation in terms of correlations of $CP^3$ is also recorded.
In the spirit of Kleins Erlangen Program, we investigate the geometric and algebraic structure of fundamental line complexes and the underlying privileged discrete integrable system for the minors of a matrix which constitute associated Plucker coord
E. Cartan proved that conformally flat hypersurfaces in S^{n+1} for n>3 have at most two distinct principal curvatures and locally envelop a one-parameter family of (n-1)-spheres. We prove that the Gauss-Codazzi equation for conformally flat hypersur
The main result of this paper is a discrete Lawson correspondence between discrete CMC surfaces in R^3 and discrete minimal surfaces in S^3. This is a correspondence between two discrete isothermic surfaces. We show that this correspondence is an iso
We induce a Poisson algebra ${cdot,cdot}_{mathcal{C}_{n,N}}$ on the configuration space $mathcal{C}_{n,N}$ of $N$ twisted polygons in $mathbb{RP}^{n-1}$ from the swapping algebra cite{L12}, which is found coincide with Faddeev-Takhtajan-Volkov algebr
Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. In this survey we discuss the following two fundamental Discretization Principles: the transformation group p