ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning the polarization-induced free hole density in nanowires graded from GaN to AlN

143   0   0.0 ( 0 )
 نشر من قبل Roberto Myers
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a systematic study of p-type polarization induced doping in graded AlGaN nanowire light emitting diodes grown on silicon wafers by plasma-assisted molecular beam epitaxy. The composition gradient in the p-type base is varied in a set of samples from 0.7 %Al/nm to 4.95 %Al/nm corresponding to negative bound polarization charge densities of 2.2x10^18 cm^-3 to 1.6x10^19 cm^-3. Capacitance measurements and energy band modeling reveal that for gradients greater than or equal to 1.30 %Al/nm, the deep donor concentration is negligible and free hole concentrations roughly equal to the bound polarization charge density are achieved up to 1.6x10^19 cm^-3 at a gradient of 4.95 %Al/nm. Accurate grading lengths in the p- and n-side of the pn-junction are extracted from scanning transmission electron microscopy images and are used to support energy band calculation and capacitance modeling. These results demonstrate the robust nature of p-type polarization doping in nanowires and put an upper bound on the magnitude of deep donor compensation.



قيم البحث

اقرأ أيضاً

The optical properties of a stack of GaN/AlN quantum discs (QDiscs) in a GaN nanowire have been studied by spatially resolved cathodoluminescence (CL) at the nanoscale (nanoCL) using a Scanning Transmission Electron Microscope (STEM) operating in spe ctrum imaging mode. For the electron beam excitation in the QDisc region, the luminescence signal is highly localized with spatial extension as low as 5 nm due to the high band gap difference between GaN and AlN. This allows for the discrimination between the emission of neighbouring QDiscs and for evidencing the presence of lateral inclusions, about 3 nm thick and 20 nm long rods (quantum rods, QRods), grown unintentionally on the nanowire sidewalls. These structures, also observed by STEM dark-field imaging, are proven to be optically active in nanoCL, emitting at similar, but usually shorter, wavelengths with respect to most QDiscs.
Top-down fabricated GaN nanowires, 250 nm in diameter and with various heights, have been used to experimentally determine the evolution of strain along the vertical direction of 1-dimensional objects. X-ray diffraction and photoluminescence techniqu es have been used to obtain the strain profile inside the nanowires from their base to their top facet for both initial compressive and tensile strains. The relaxation behaviors derived from optical and structural characterizations perfectly match the numerical results of calculations based on a continuous media approach. By monitoring the elastic relaxation enabled by the lateral free-surfaces, the height from which the nanowires can be considered strain-free has been estimated. Based on this result, NWs sufficiently high to be strain-free have been coalesced to form a continuous GaN layer. X-ray diffraction, photoluminescence and cathodoluminescence clearly show that despite the initial strain-free nanowires template, the final GaN layer is strained.
Transport properties of holes in InP nanowires were calculated considering electron-phonon interaction via deformation potentials, the effect of temperature and strain fields. Using molecular dynamics, we simulate nanowire structures, LO-phonon energ y renormalization and lifetime. The valence band ground state changes between light- and heavy-hole character, as the strain fields and the nanowire size are changed. Drastic changes in the mobility arise with the onset of resonance between the LO-phonons and the separation between valence subbands.
High-conductivity undoped GaN/AlN 2D hole gases (2DHGs), the p-type dual of the AlGaN/GaN 2D electron gases (2DEGs), have offered valuable insights into hole transport in GaN and enabled the first GaN GHz RF p-channel FETs. They are an important step towards high-speed and high-power complementary electronics with wide-bandgap semiconductors. These technologically and scientifically relevant 2D hole gases are perceived to be not as robust as the 2DEGs because structurally similar heterostructures exhibit wide variations of the hole density over $Delta p_s >$ 7 x 10$^{13}$ cm$^{-2}$, and low mobilities. In this work, we uncover that the variations are tied to undesired dopant impurities such as Silicon and Oxygen floating up from the nucleation interface. By introducing impurity blocking layers (IBLs) in the AlN buffer layer, we eliminate the variability in 2D hole gas densities and transport properties, resulting in a much tighter-control over the 2DHG density variations to $Delta p_s leq$ 1 x 10$^{13}$ cm$^{-2}$ across growths, and a 3x boost in the Hall mobilities. These changes result in a 2-3x increase in hole conductivity when compared to GaN/AlN structures without IBLs.
This work shows that the combination of ultrathin highly strained GaN quantum wells embedded in an AlN matrix, with controlled isotopic concentrations of Nitrogen enables a dual marker method for Raman spectroscopy. By combining these techniques, we demonstrate the effectiveness in studying strain in the vertical direction. This technique will enable the precise probing of properties of buried active layers in heterostructures, and can be extended in the future to vertical devices such as those used for optical emitters, and for power electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا