ﻻ يوجد ملخص باللغة العربية
The relation between the stellar mass and the star formation rate characterizes how the instantaneous star formation is determined by the galaxy past star formation history and by the growth of the dark matter structures. We deconstruct the M-SFR plane by measuring the specific SFR functions in several stellar mass bins from z=0.2 out to z=1.4. Our analysis is primary based on a MIPS 24$mu m$ selected catalogue combining the COSMOS and GOODS surveys. We estimate the SFR by combining mid- and far-infrared data for 20500 galaxies. The sSFR functions are derived in four stellar mass bins within the range 9.5<log(M/Msun)<11.5. First, we demonstrate the importance of taking into account selection effects when studying the M-SFR relation. Secondly, we find a mass-dependent evolution of the median sSFR with redshift varying as $sSFR propto (1+z)^{b}$, with $b$ increasing from $b=2.88$ to $b=3.78$ between $M=10^{9.75}Msun$ and $M=10^{11.1}Msun$, respectively. At low masses, this evolution is consistent with the cosmological accretion rate and predictions from semi-analytical models (SAM). This agreement breaks down for more massive galaxies showing the need for a more comprehensive description of the star-formation history in massive galaxies. Third, we obtain that the shape of the sSFR function is invariant with time at z<1.4 but depends on the mass. We observe a broadening of the sSFR function ranging from 0.28 dex at $M=10^{9.75}Msun$ to 0.46 dex at $M=10^{11.1}Msun$. Such increase in the scatter of the M-SFR relation suggests an increasing diversity of SFHs as the stellar mass increases. Finally, we find a gradual decline of the sSFR with mass as $log(sSFR) propto -0.17M$. We discuss the numerous physical processes, as gas exhaustion in hot gas halos or secular evolution, which can gradually reduce the sSFR and increase the SFH diversity.
The apparent correlation between the specific star formation rate (sSFR) and total stellar mass (M_star) of galaxies is a fundamental relationship indicating how they formed their stellar populations. To attempt to understand this relation, we hypoth
We use a robust sample of 11 z~7 galaxies (z-dropouts) to estimate the stellar mass density of the universe when it was only ~750 Myr old. We combine the very deep optical to near-Infrared photometry from the HST ACS and NICMOS cameras with mid-Infra
Combining the catalogue of galaxy morphologies in the COSMOS field and the sample of H$alpha$ emitters at redshifts $z=0.4$ and $z=0.84$ of the HiZELS survey, we selected $sim$ 220 star-forming bulgeless systems (Sersic index $n leq 1.5$) at both epo
We present results on the clustering properties of galaxies as a function of both stellar mass and specific star formation rate (sSFR) using data from the PRIMUS and DEEP2 galaxy redshift surveys spanning 0.2 < z < 1.2. We use spectroscopic redshifts
We analyze the dependence of galaxy structure (size and Sersic index) and mode of star formation (Sigma_SFR and SFR_IR/SFR_UV) on the position of galaxies in the SFR versus Mass diagram. Our sample comprises roughly 640000 galaxies at z~0.1, 130000 g