ترغب بنشر مسار تعليمي؟ اضغط هنا

Implications of Coronal Line Emission in NGC 4696

99   0   0.0 ( 0 )
 نشر من قبل Marios Chatzikos
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Chatzikos




اسأل ChatGPT حول البحث

We announce a new facility in the spectral code CLOUDY that enables tracking the evolution of a cooling parcel of gas with time. For gas cooling from temperatures relevant to galaxy clusters, earlier calculations estimated the [Fe XIV] {lambda}5303 / [Fe X] {lambda}6375 luminosity ratio, a critical diagnostic of a cooling plasma, to slightly less than unity. By contrast, our calculations predict a ratio ~3. We revisit recent optical coronal line observations along the X-ray cool arc around NGC 4696 by Canning et al. (2011), which detected [Fe X] {lambda}6375, but not [Fe XIV] {lambda}5303. We show that these observations are not consistent with predictions of cooling flow models. Differential extinction could in principle account for the observations, but it requires extinction levels (A_V > 3.625) incompatible with previous observations. The non-detection of [Fe XIV] implies a temperature ceiling of 2.1 million K. Assuming cylindrical geometry and transonic turbulent pressure support, we estimate the gas mass at ~1 million solar masses. The coronal gas is cooling isochorically. We propose that the coronal gas has not condensed out of the intracluster medium, but instead is the conductive or mixing interface between the X-ray plume and the optical filaments. We present a number of emission lines that may be pursued to test this hypothesis and constrain the amount of intermediate temperature gas in the system.



قيم البحث

اقرأ أيضاً

We present the first extensive study of the coronal line variability in an active galaxy. Our data set for the nearby source NGC 4151 consists of six epochs of quasi-simultaneous optical and near-infrared spectroscopy spanning a period of about eight years and five epochs of X-ray spectroscopy overlapping in time with it. None of the coronal lines showed the variability behaviour observed for the broad emission lines and hot dust emission. In general, the coronal lines varied only weakly, if at all. Using the optical [Fe VII] and X-ray O VII emission lines we estimate that the coronal line gas has a relatively low density of n~10^3 cm^-3 and a relatively high ionisation parameter of log U~1. The resultant distance of the coronal line gas from the ionising source is about two light years, which puts this region well beyond the hot inner face of the obscuring dusty torus. The high ionisation parameter implies that the coronal line region is an independent entity rather than part of a continuous gas distribution connecting the broad and narrow emission line regions. We present tentative evidence for the X-ray heated wind scenario of Pier & Voit. We find that the increased ionising radiation that heats the dusty torus also increases the cooling efficiency of the coronal line gas, most likely due to a stronger adiabatic expansion.
272 - Hermine Landt 2015
We present the second extensive study of the coronal line variability in an active galaxy. Our data set for the well-studied Seyfert galaxy NGC 5548 consists of five epochs of quasi-simultaneous optical and near-infrared spectroscopy spanning a perio d of about five years and three epochs of X-ray spectroscopy overlapping in time with it. Whereas the broad emission lines and hot dust emission varied only moderately, the coronal lines varied strongly. However, the observed high variability is mainly due to a flux decrease. Using the optical [FeVII] and X-ray OVII emission lines we estimate that the coronal line gas has a relatively low density of n~10^3/cm^3 and a relatively high ionisation parameter of log U~1. The resultant distance of the coronal line gas from the ionising source of about eight light years places this region well beyond the hot inner face of the dusty torus. These results imply that the coronal line region is an independent entity. We find again support for the X-ray heated wind scenario of Pier & Voit; the increased ionising radiation that heats the dusty torus also increases the cooling efficiency of the coronal line gas, most likely due to a stronger adiabatic expansion. The much stronger coronal line variability of NGC 5548 relative to that of NGC 4151 can also be explained within this picture. NGC 5548 has much stronger coronal lines relative to the low ionisation lines than NGC 4151 indicating a stronger wind, in which case a stronger adiabatic expansion of the gas and so fading of the line emission is expected.
Coronal-Line Forest Active Galactic Nuclei (CLiF AGN) are characterized by strong high-ionization lines, which contrast to what is found in most AGNs. Here, we carry out a multiwavelength analysis aimed at understanding the physical processes in the Narrow Line Region (NLR) of these objects and unveiling if they are indeed a special class of AGN. By comparing coronal emission-line ratios we conclude that there are no differences between CLiF and non-CLiF AGNs. We derive physical conditions of the narrow line region (NLR) gas and found electron densities in the range $3.6times$10$^{2}$ - $1.7times$10$^{4}$ cm$^{-3}$ and temperatures of $3.7times$10$^{3}$ - $6.3times$10$^{4}$ K, suggesting that the ionization mechanism is associated primarily with photoionization by the AGN. We suggest a NLR dominated by matter-bounded clouds to explain the high-ionization line spectrum observed. The mass of the central black hole, derived from the stellar velocity dispersion show that most of the objects have values in the interval 10$^{7-8}$~M$odot$. Our results imply that CLiF AGN is not a separate category of AGNs. In all optical/near-infrared emission-line properties analyzed, they represent an extension to the low/high ends of the distribution within the AGN class.
Using VLTI/GRAVITY and SINFONI data, we investigate the sub-pc gas and dust structure around the nearby type 1 AGN hosted by NGC 3783. The K-band coverage of GRAVITY uniquely allows a simultaneous analysis of the size and kinematics of the broad line region (BLR), the size and structure of the near-IR continuum emitting hot dust, and the size of the coronal line region (CLR). We find the BLR probed through broad Br$gamma$ emission is well described by a rotating, thick disk with a radial distribution of clouds peaking in the inner region. In our BLR model the physical mean radius of 16 light days is nearly twice the 10 day time lag that would be measured, which matches very well the 10 day time lag that has been measured by reverberation mapping. We measure a hot dust FWHM size of 0.74 mas (0.14 pc) and further reconstruct an image of the hot dust which reveals a faint (5% of the total flux) offset cloud which we interpret as an accreting cloud heated by the central AGN. Finally, we directly measure the FWHM size of the nuclear CLR as traced by the [CaVIII] and narrow Br$gamma$ line. We find a FWHM size of 2.2 mas (0.4 pc), fully in line with the expectation of the CLR located between the BLR and narrow line region. Combining all of these measurements together with larger scale near-IR integral field unit and mid-IR interferometry data, we are able to comprehensively map the structure and dynamics of gas and dust from 0.01--100 pc.
107 - C. Henkel , S. Muehle , G. Bendo 2018
NGC 4945 is one of the nearest (~3.8 Mpc; 1 ~ 19 pc) starburst galaxies. ALMA band 3 (3--4,mm) observations of HCN, HCO+, CS, C3H2, SiO, HCO, and CH3C2H were carried out with ~2 resolution. The lines reveal a rotating nuclear disk of projected size 1 0 x 2 with position angle ~45 deg, inclination ~75 deg and an unresolved bright central core of size <2.5. The continuum source (mostly free-free radiation) is more compact than the nuclear disk by a linear factor of two but shows the same position angle and is centered 0.39 +_ 0.14 northeast of the nuclear accretion disk defined by H2O maser emission. Outside the nuclear disk, both HCN and CS delineate molecular arms on opposite sides of the dynamical center. These are connected by a (deprojected) 0.6 kpc sized molecular bridge, likely a dense gaseous bar seen almost ends-on, shifting gas from the front and back side into the nuclear disk. Modeling this nuclear disk located farther inside <100 pc) with tilted rings indicates a coplanar outflow reaching a characteristic deprojectd velocity of ~50 km/s. All our molecular lines, with the notable exception of CH3C2H, show significant absorption near the systemic velocity (~571 km/s), within a range of ~500-660 km/s. Apparently, only molecular transitions with low critical H2-density do not show absorption. The velocity field of the nuclear disk, derived from CH3C2H, provides evidence for rigid rotation in the inner few arcseconds and a dynamical mass of M = (2.1+_0.2) x 10^8 Mo inside a galactocentric radius of 2.45, with a significantly flattened rotation curve farther out. Velocity integrated line intensity maps with most pronounced absorption show molecular peak positions up to 1.5 southwest of the continuum peak, presumably due to absorption, which appears to be most severe slightly northeast of the nuclear maser disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا