ﻻ يوجد ملخص باللغة العربية
Legged robots are typically in rigid contact with the environment at multiple locations, which add a degree of complexity to their control. We present a method to control the motion and a subset of the contact forces of a floating-base robot. We derive a new formulation of the lexicographic optimization problem typically arising in multitask motion/force control frameworks. The structure of the constraints of the problem (i.e. the dynamics of the robot) allows us to find a sparse analytical solution. This leads to an equivalent optimization with reduced computational complexity, comparable to inverse-dynamics based approaches. At the same time, our method preserves the flexibility of optimization based control frameworks. Simulations were carried out to achieve different multi-contact behaviors on a 23-degree-offreedom humanoid robot, validating the presented approach. A comparison with another state-of-the-art control technique with similar computational complexity shows the benefits of our controller, which can eliminate force/torque discontinuities.
Voronoi coverage control is a particular problem of importance in the area of multi-robot systems, which considers a network of multiple autonomous robots, tasked with optimally covering a large area. This is a common task for fleets of fixed-wing Un
In this paper, we present an impedance control design for multi-variable linear and nonlinear robotic systems. The control design considers force and state feedback to improve the performance of the closed loop. Simultaneous feedback of forces and st
Reliable real-time planning for robots is essential in todays rapidly expanding automated ecosystem. In such environments, traditional methods that plan by relaxing constraints become unreliable or slow-down for kinematically constrained robots. This
In this article, we address the problem of computing adaptive sensorimotor models that can be used for guiding the motion of robotic systems with uncertain action-to-perception relations. The formulation of the uncalibrated sensor-based control probl
We introduce a robust control architecture for the whole-body motion control of torque controlled robots with arms and legs. The method is based on the robust control of contact forces in order to track a planned Center of Mass trajectory. Its appeal