ﻻ يوجد ملخص باللغة العربية
We investigate the evolution of galaxy masses and star formation rates in the Evolution and Assembly of Galaxies and their Environment (EAGLE) simulations. These comprise a suite of hydrodynamical simulations in a $Lambda$CDM cosmogony with subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. The subgrid feedback was calibrated to reproduce the observed present-day galaxy stellar mass function and galaxy sizes. Here we demonstrate that the simulations reproduce the observed growth of the stellar mass density to within 20 per cent. The simulation also tracks the observed evolution of the galaxy stellar mass function out to redshift z = 7, with differences comparable to the plausible uncertainties in the interpretation of the data. Just as with observed galaxies, the specific star formation rates of simulated galaxies are bimodal, with distinct star forming and passive sequences. The specific star formation rates of star forming galaxies are typically 0.2 to 0.4 dex lower than observed, but the evolution of the rates track the observations closely. The unprecedented level of agreement between simulation and data makes EAGLE a powerful resource to understand the physical processes that govern galaxy formation.
We examine the growth of the stellar content of galaxies from z=3-0 in cosmological hydrodynamic simulations incorporating parameterised galactic outflows. Without outflows, galaxies overproduce stellar masses (M*) and star formation rates (SFRs) com
We have updated the Munich galaxy formation model to the Planck first-year cosmology, while modifying the treatment of baryonic processes to reproduce recent data on the abundance and passive fractions of galaxies from z= 3 down to z=0. Matching thes
Star-formation activity is a key property to probe the structure formation and hence characterise the large-scale structures of the universe. This information can be deduced from the star formation rate (SFR) and the stellar mass (Mstar), both of whi
To understand cosmic mass assembly in the Universe at early epochs, we primarily rely on measurements of stellar mass and star formation rate of distant galaxies. In this paper, we present stellar masses and star formation rates of six high-redshift
We present the public data release of halo and galaxy catalogues extracted from the EAGLE suite of cosmological hydrodynamical simulations of galaxy formation. These simulations were performed with an enhanced version of the GADGET code that includes