ترغب بنشر مسار تعليمي؟ اضغط هنا

Laser-driven relativistic tunneling from p-states

126   0   0.0 ( 0 )
 نشر من قبل Karen Hatsagortsyan
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The tunneling ionization of an electron from a p-state in a highly charged ion in the relativistic regime is investigated in a linearly polarized strong laser field. In contrast to the case of an s-state, the tunneling ionization from the p-state is spin asymmetric. We have singled out two reasons for the spin asymmetry: first, the difference of the electron energy Zeeman splitting in the bound state and during tunneling, and second, the relativistic momentum shift along the laser propagation direction during the under-the barrier motion. Due to the latter, those states are predominantly ionized where the electron rotation is opposite to the electron relativistic shift during the under-the-barrier motion. We have investigated the dependence of the ionization rate on the laser intensity for different projections of the total angular momentum and identified the intensity parameter which governs this behaviour. The significant change of the ionization rate is originated from the different precession dynamics of the total angular momentum in the bound state at high and low intensities.



قيم البحث

اقرأ أيضاً

Studying a single atomic ion confined in a time-dependent periodic anharmonic potential, we find large amplitude trajectories stable for millions of oscillation periods in the presence of stochastic laser cooling. The competition between energy gain from the time-dependent drive and damping leads to the stabilization of such stochastic limit cycles. Instead of converging to the global minimum of the averaged potential, the steady-state phase-space distribution develops multiple peaks in the regions of phase space where the frequency of the motion is close to a multiple of the periodic drive. Such distinct nonequilibrium behaviour can be observed in realistic radio-frequency traps with laser-cooled ions, suggesting that Paul traps offer a well-controlled test-bed for studying transport and dynamics of microscopically driven systems.
We describe numerically the ionization process induced by linearly and circularly polarized XUV attosecond laser pulses on an aligned atomic target, specifically, the excited state Ne$^*(1s^22s^22p^5[{}^2text{P}^text{o}_{1/2}]3s[^1text{P}^o])$. We co mpute the excited atomic state by applying the time-dependent restricted-active-space self-consistent field (TD-RASSCF) method to fully account for the electronic correlation. We find that correlation-assisted ionization channels can dominate over channels accessible without correlation. We also observe that the rotation of the photoelectron momentum distribution by circularly polarized laser pulses compared to the case of linear polarization can be explained in terms of differences in accessible ionization channels. This study shows that it is essential to include electron correlation effects to obtain an accurate description of the photoelectron emission dynamics from aligned excited states.
The derivation of approximate wave functions for an electron submitted to both a coulomb and a time-dependent laser electric fields, the so-called Coulomb-Volkov (CV) state, is addressed. Despite its derivation for continuum states does not exhibit a ny particular problem within the framework of the standard theory of quantum mechanics (QM), difficulties arise when considering an initially bound atomic state. Indeed the natural way of translating the unperturbed momentum by the laser vector potential is no longer possible since a bound state does not exhibit a plane wave form including explicitely a momentum. The use of a fractal space permits to naturally define a momentum for a bound wave function. Within this framework, it is shown how the derivation of laser-dressed bound states can be performed. Based on a generalized eikonal approach, a new expression for the laser-dressed states is also derived, fully symmetric relative to the continuum or bound nature of the initial unperturbed wave function. It includes an additional crossed term in the Volkov phase which was not obtained within the standard theory of quantum mechanics. The derivations within this fractal framework have highlighted other possible ways to derive approximate laser-dressed states in QM. After comparing the various obtained wave functions, an application to the prediction of the ionization probability of hydrogen targets by attosecond XUV pulses within the sudden approximation is provided. This approach allows to make predictions in various regimes depending on the laser intensity, going from the non-resonant multiphoton absorption to tunneling and barrier-suppression ionization.
We develop a relativistic Coulomb-corrected strong field approximation (SFA) for the investigation of spin effects at above-threshold ionization in relativistically strong laser fields with highly charged hydrogen-like ions. The Coulomb-corrected SFA is based on the relativistic eikonal-Volkov wave function describing the ionized electron laser-driven continuum dynamics disturbed by the Coulomb field of the ionic core. The SFA in different partitions of the total Hamiltonian is considered. The formalism is applied for direct ionization of a hydrogen-like system in a strong linearly polarized laser field. The differential and total ionization rates are calculated analytically. The relativistic analogue of the Perelomov-Popov-Terentev ionization rate is retrieved within the SFA technique. The physical relevance of the SFA in different partitions is discussed.
290 - T. Lindvall 2013
Many ion species commonly used for laser-cooled ion trapping studies have a low-lying metastable 2D3/2 state that can become populated due to spontaneous emission from the 2P1/2 excited state. This requires a repumper laser to maintain the ion in the Doppler cooling cycle. Typically the 2D3/2 state, or some of its hyperfine components if the ion has nuclear spin, has a higher multiplicity than the upper state of the repumping transition. This can lead to dark states, which have to be destabilized by an external magnetic field or by modulating the polarization of the repumper laser. We propose using unpolarized, incoherent amplified spontaneous emission (ASE) to drive the repumping transition. An ASE source offers several advantages compared to a laser. It prevents the buildup of dark states without external polarization modulation even in zero magnetic field, it can drive multiple hyperfine transitions simultaneously, and it requires no frequency stabilization. These features make it very compact and robust, which is essential for the development of practical, transportable optical ion clocks. We construct a theoretical model for the ASE radiation, including the possibility of the source being partially polarized. Using 88Sr+ as an example, the performance of the ASE source compared to a single-mode laser is analyzed by numerically solving the eight-level density matrix equations for the involved energy levels. Finally a reduced three-level system is derived, yielding a simple formula for the excited state population and scattering rate, which can be used to optimize the experimental parameters. The required ASE power spectral density can be obtained with current technology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا