Classes SSGP(n)(n < omega) of topological groups are defined, and the class-theoretic inclusions SSGP(n) subseteq SSGP(n+1) subseteq m.a.p. are established and shown proper. These classes are investigated with respect to the properties normally studied by topologists (products, quotients, passage to dense subgroups, and the like). In passing the authors establish the presence of the SSGP(1) or SSGP(2) property in many of the early examples in the literature of abelian m.a.p. groups.