ﻻ يوجد ملخص باللغة العربية
Only very few z>5 quasars discovered to date are radio-loud, with a radio-to-optical flux ratio (radio-loudness parameter) higher than 10. Here we report the discovery of an optically luminous radio-loud quasar, SDSS J013127.34-032100.1 (J0131-0321 in short), at z=5.18+-0.01 using the Lijiang 2.4m and Magellan telescopes. J0131-0321 has a spectral energy distribution consistent with that of radio-loud quasars. With an i-band magnitude of 18.47 and radio flux density of 33 mJy, its radio-loudness parameter is ~100. The optical and near-infrared spectra taken by Magellan enable us to estimate its bolometric luminosity to be L_bol ~ 1.1E48 erg/s, approximately 4.5 times greater than that of the most distant quasar known to date. The black hole mass of J0131-0321 is estimated to be 2.7E9 solar masses, with an uncertainty up to 0.4 dex. Detailed physical properties of this high-redshift, radio-loud, potentially super-Eddington quasar can be probed in the future with more dedicated and intensive follow-up observations using multi-wavelength facilities.
The radio-loud quasar SDSS J013127.34-032100.1at a redshift z=5.18 is one of the most distant radio-loud objects. The radio to optical flux ratio (i.e. the radio-loudness) of the source is large, making it a promising blazar candidate. Its overall sp
We report on X-ray measurements constraining the spectral energy distribution (SED) of the high-redshift $z=5.18$ blazar SDSS J013127.34$-$032100.1 with new XMM-Newton and NuSTAR exposures. The blazars X-ray spectrum is well fit by a power law with $
We present high angular resolution imaging ($23.9 times 11.3$ mas, $138.6 times 65.5$ pc) of the radio-loud quasar PSO~J352.4034$-$15.3373 at $z=5.84$ with the Very Long Baseline Array (VLBA) at 1.54 GHz. This quasar has the highest radio-to-optical
We carry out a series of deep Karl G. Jansky Very Large Array (VLA) S-band observations of a sample of 21 quasars at $zsim6$. The new observations expand the searches of radio continuum emission to the optically faint quasar population at the highest
Radio sources at the highest redshifts can provide unique information on the first massive galaxies and black holes, the densest primordial environments, and the epoch of reionization. The number of astronomical objects identified at z>6 has increase