ﻻ يوجد ملخص باللغة العربية
Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many body physics. Unfortunately, the pair correlation function $g(r)$ inferred from neutron scattering measurements of the differential cross section $dsigma over dOmega$ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43~meV and 16.1~meV on liquid hydrogen at 15.6~K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1~meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra non-equilibrium component of orthohydrogen. Liquid parahydrogen is also a widely-used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.
Background: The most significant source of background in direct dark matter searches are neutrons that scatter elastically from nuclei in the detectors sensitive volume. Experimental data for the elastic scattering cross section of neutrons from argo
In order to measure the total cross section for thermal neutrons, a photoneutron source (PNS, phase 1) has been developed for the acquisition of nuclear data for the Thorium Molten Salt Reactor (TMSR) at the Shanghai Institute of Applied Physics (SIN
The use of argon as a detection and shielding medium for neutrino and dark matter experiments has made the precise knowledge of the cross section for neutron capture on argon an important design and operational parameter. Since previous measurements
Measurements of polarized neutron--polarized $^3$He scattering are reported. The target consisted of cryogenically-polarized solid $^3$He, thickness 0.04 atom/b and polarization 40%. The longitudinal and transverse total cross-section differences $De
Ultracold neutrons provide a unique tool for the study of neutron properties. An overview is given of the ultracold neutron (UCN) source at PSI, which produces the highest UCN intensities to fundamental physics experiments by exploiting the high inte