Lower and upper probabilities in the distributive lattice of subsystems


الملخص بالإنكليزية

The set of subsystems of a finite quantum system (with variables in Z(n)) together with logical connectives, is a distributive lattice. With regard to this lattice, the (where P(m) is the projector to) obeys a supermodularity inequality, and it is interpreted as a lower probability in the sense of the Dempster-Shafer theory, and not as a Kolmogorov probability. It is shown that the basic concepts of the Dempster-Shafer theory (lower and upper probabilities and the Dempster multivaluedness) are pertinent to the quantum formalism of finite systems.

تحميل البحث