We present three independent catalogs of point-sources extracted from SPIRE images at 250, 350, and 500 micron as a part of the Herschel Virgo Cluster Survey (HeViCS). The source positions are determined by estimating the likelihood to be a real source for each peak on the maps and the flux densities are estimated using the sourceExtractorTimeline, a timeline-based point source fitter. Afterwards, each source is subtracted from the maps, removing a Gaussian function in every position with the full width half maximum equal to that estimated in sourceExtractorTimeline. This procedure improves the robustness of our algorithm in terms of source identification. The HeViCS catalogs contain about 52000, 42200, and 18700 sources selected at 250, 350, and 500 micron above 3sigma and are ~ 75%, 62%, and 50% complete at flux densities of 20 mJy at 250, 350, 500 micron, respectively. We then measured source number counts at 250, 350, and 500 micron and we also cross-correlated the catalogs with the Sloan Digital Sky Survey to investigate the redshift distribution of the nearby sources. From this cross-correlation, we select ~2000 sources with reliable fluxes and a high signal-to-noise ratio, finding an average redshift z~0.3+/-0.22. The number counts at 250, 350, and 500 micron show an increase in the slope below 200 mJy, indicating a strong evolution in number of density for galaxies at these fluxes. In general, models tend to overpredict the counts at brighter flux densities, underlying the importance of studying the Rayleigh-Jeans part of the spectral energy distribution to refine the theoretical recipes of the models. Our iterative method for source identification allowed the detection of a family of 500 micron sources that are not foreground objects belonging to Virgo and not found in other catalogs.