ﻻ يوجد ملخص باللغة العربية
We discuss two geosynchronous gravitational wave mission concepts, which we generically name gLISA. One relies on the science instrument hosting program onboard geostationary commercial satellites, while the other takes advantage of recent developments in the aerospace industry that result in dramatic satellite and launching vehicle cost reductions for a dedicated geosynchronous mission. To achieve the required level of disturbance free-fall onboard these large and heavy platforms we propose a two-stage drag-free system, which incorporates the Modular Gravitational Reference Sensor (MGRS) (developed at Stanford University) and does not rely on the use of micro-Newton thrusters. Although both mission concepts are characterized by different technical and programmatic challenges, individually they could be flown and operated at a cost significantly lower than those of previously envisioned gravitational wave missions. We estimate both mission concepts to cost less than 500M US$ each, and in the year 2015 we will perform at JPL a detailed selecting mission cost analysis.
We explore the prospects for the detection of giant circumbinary exoplanets and brown dwarfs (BDs) orbiting Galactic double white dwarfs binaries (DWDs) with the Laser Interferometer Space Antenna (LISA). By assuming an occurrence rate of 50%, motiva
Following the selection of The Gravitational Universe by ESA, and the successful flight of LISA Pathfinder, the LISA Consortium now proposes a 4 year mission in response to ESAs call for missions for L3. The observatory will be based on three arms wi
Bayesian analysis of LISA data sets based on Markov chain Monte Carlo methods has been shown to be a challenging problem, in part due to the complicated structure of the likelihood function consisting of several isolated local maxima that dramaticall
I review the scientific potential of the Laser Interferometer Space Antenna (LISA), a space-borne gravitational wave (GW) observatory to be launched in the early 30s. Thanks to its sensitivity in the milli-Hz frequency range, LISA will reveal a varie
Given the recent advances in gravitational-wave detection technologies, the detection and characterisation of gravitational-wave backgrounds (GWBs) with the Laser Interferometer Space Antenna (LISA) is a real possibility. To assess the abilities of t