ترغب بنشر مسار تعليمي؟ اضغط هنا

Quarkonium spectral function in medium at next-to-leading order for any quark mass

127   0   0.0 ( 0 )
 نشر من قبل Yannis Burnier
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Yannis Burnier




اسأل ChatGPT حول البحث

The vector channel spectral function at zero spatial momentum is calculated at next-to-leading order in thermal QCD for any quark mass. It corresponds to the imaginary part of the massive quark contribution to the photon polarization tensor. The spectrum shows a well defined transport peak in contrast to both the heavy quark limit studied previously, where the low frequency domain is exponentially suppressed at this order and the naive massless case where it vanishes at leading order and diverges at next-to-leading order. From our general expressions, the massless limit can be taken and we show that no divergences occur if done carefully. Finally, we compare the massless limit to results from lattice simulations.



قيم البحث

اقرأ أيضاً

We compute the imaginary part of the heavy quark contribution to the photon polarization tensor, i.e. the quarkonium spectral function in the vector channel, at next-to-leading order in thermal QCD. Matching our result, which is valid sufficiently fa r away from the two-quark threshold, with a previously determined resummed expression, which is valid close to the threshold, we obtain a phenomenological estimate for the spectral function valid for all non-zero energies. In particular, the new expression allows to fix the overall normalization of the previous resummed one. Our result may be helpful for lattice reconstructions of the spectral function (near the continuum limit), which necessitate its high energy behaviour as input, and can in principle also be compared with the dilepton production rate measured in heavy ion collision experiments. In an appendix analogous results are given for the scalar channel.
We present the first calculation of the next-to-next-to-leading order threshold soft function for top quark pair production at hadron colliders, with full velocity dependence of the massive top quarks. Our results are fully analytic, and can be entir ely written in terms of generalized polylogarithms. The scale-dependence of our result coincides with the well-known two-loop anomalous dimension matrix including the three-parton correlations, which at the two-loop order only appear when more than one massive partons are involved in the scattering process. In the boosted limit, our result exhibits the expected factorization property of mass logarithms, which leads to a consistent extraction of the soft fragmentation function. The next-to-next-to-leading order soft function obtained in this paper is an important ingredient for threshold resummation at the next-to-next-to-next-to-leading logarithmic accuracy.
We present the first calculation at next-to-leading order (NLO) in $alpha_s$ of a fragmentation function into quarkonium whose form at leading order is a nontrivial function of $z$, namely the fragmentation function for a gluon into a spin-singlet S- wave state at leading order in the relative velocity. To calculate the real NLO corrections, we introduce a new subtraction scheme that allows the phase-space integrals to be evaluated in 4 dimensions. We extract all ultraviolet and infrared divergences in the real NLO corrections analytically by calculating the phase-space integrals of the subtraction terms in $4-2epsilon$ dimensions. We also extract the divergences in the virtual NLO corrections analytically, and detail the cancellation of all divergences after renormalization. The NLO corrections have a dramatic effect on the shape of the fragmentation function, and they significantly increase the fragmentation probability.
220 - M. Laine , A. Vuorinen , Y. Zhu 2011
Motivated by applications in thermal QCD and cosmology, we elaborate on a general method for computing next-to-leading order spectral functions for composite operators at vanishing spatial momentum, accounting for real, virtual as well as thermal cor rections. As an example, we compute these functions (together with the corresponding imaginary-time correlators which can be compared with lattice simulations) for scalar and pseudoscalar densities in pure Yang-Mills theory. Our results may turn out to be helpful in non-perturbative estimates of the corresponding transport coefficients, which are the bulk viscosity in the scalar channel and the rate of anomalous chirality violation in the pseudoscalar channel. We also mention links to cosmology, although the most useful results in that context may come from a future generalization of our methods to other correlators.
198 - Y. Kiyo , Y. Sumino 2014
We derive a full formula for the energy level of a heavy quarkonium state identified by the quantum numbers $n$, $ell$, $s$ and $j$, up to ${cal O}(alpha_s^5 m)$ and ${cal O}(alpha_s^5 m log alpha_s)$ in perturbative QCD. The QCD Bethe logarithm is g iven in a one-parameter integral form. The rest of the formula is given as a combination of rational numbers, transcendental numbers ($pi$, $zeta(3)$, $zeta(5)$) and finite sums (besides the 3-loop constant $bar{a}_3$ of the static potential whose full analytic form is still unknown). A derivation of the formula is given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا