Aging associated brain decline often result in some kind of dementia. Even when this is a complex brain disorder a physical model can be used in order to describe its general behavior. This model is based in first principles. A probabilistic model for the development of dementia is obtained and fitted to some experimental data obtained from the Alzheimers Disease Neuroimaging Initiative. It is explained how dementia appears as a consequence of aging and why it is irreversible.
Biomechanical modeling of tissue deformation can be used to simulate different scenarios of longitudinal brain evolution. In this work,we present a deep learning framework for hyper-elastic strain modelling of brain atrophy, during healthy ageing and
in Alzheimers Disease. The framework directly models the effects of age, disease status, and scan interval to regress regional patterns of atrophy, from which a strain-based model estimates deformations. This model is trained and validated using 3D structural magnetic resonance imaging data from the ADNI cohort. Results show that the framework can estimate realistic deformations, following the known course of Alzheimers disease, that clearly differentiate between healthy and demented patterns of ageing. This suggests the framework has potential to be incorporated into explainable models of disease, for the exploration of interventions and counterfactual examples.
The current-source density (CSD) analysis is a widely used method in brain electrophysiology, but this method rests on a series of assumptions, namely that the surrounding extracellular medium is resistive and uniform, and in som
Humans face the task of balancing dynamic systems near an unstable equilibrium repeatedly throughout their lives. Much research has been aimed at understanding the mechanisms of intermittent control in the context of human balance control. The presen
t paper deals with one of the recent developments in the theory of human intermittent control, namely, the double-well model of noise-driven control activation. We demonstrate that the double-well model can reproduce the whole range of experimentally observed distributions under different conditions. Moreover, we show that a slight change in the noise intensity parameter leads to a sudden shift of the action point distribution shape, that is, a phase transition is observed.
A method of data assimilation (DA) is employed to estimate electrophysiological parameters of neurons simultaneously with their synaptic connectivity in a small model biological network. The DA procedure is cast as an optimization, with a cost functi
on consisting of both a measurement error and a model error term. An iterative reweighting of these terms permits a systematic method to identify the lowest minimum, within a local region of state space, on the surface of a non-convex cost function. In the model, two sets of parameter values are associated with two particular functional modes of network activity: simultaneous firing of all neurons, and a pattern-generating mode wherein the neurons burst in sequence. The DA procedure is able to recover these modes if: i) the stimulating electrical currents have chaotic waveforms, and ii) the measurements consist of the membrane voltages of all neurons in the circuit. Further, this method is able to prune a model of unnecessarily high dimensionality to a representation that contains the maximum dimensionality required to reproduce the provided measurements. This paper offers a proof-of-concept that DA has the potential to inform laboratory designs for estimating properties in small and isolatable functional circuits.
The anatomically layered structure of a human brain results in leveled functions. In all these levels of different functions, comparison, feedback and imitation are the universal and crucial mechanisms. Languages, symbols and tools play key roles in
the development of human brain and entire civilization.